

Principali informazioni sull’insegnamento

Denominazione

dell’insegnamento
Integrazione e Test di Sistemi Software

Corso di studio Informatica e Tecnologie per la Produzione del Software

Anno Accademico 2025/26

Crediti formativi universitari (CFU) / European

Credit Transfer and Accumulation System (ECTS)
6 CFU

Settore Scientifico Disciplinare ING-INF/05

Lingua di erogazione Italiano

Anno di corso Terzo

Periodo di erogazione 1^semestre, le date esatte sono riportate nel manifesto/regolamento

Obbligo di frequenza No, ma la frequenza è fortemente raccomandata

Sito web del corso di studio

https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-

laurea/informatica-tps-270/laurea-triennale-in-informatica-e-tecnologie-per-la-

produzione-del-software-d.m.-270

Docente/i

Nome e cognome Azzurra Ragone

Indirizzo mail azzurra.ragone@uniba.it

Telefono +39 080-5443289 (int. 3289)

Sede
Dipartimento di Informatica, Via Orabona 4, 70125, Bari. Stanza n.616, 6^ piano.

Sede virtuale Piattaforma elearning - https://elearning.di.uniba.it/

Sito web del docente https://www.uniba.it/it/docenti/ragone-azzurra

Ricevimento (giorni, orari e

modalità, es. su appuntamento)
Martedì 12:00 - 13:00 (su appuntamento da concordare per email con il docente)

Syllabus

Obiettivi formativi

L’insegnamento si propone di introdurre le metodologie, strategie, tecniche e

strumenti di integrazione e testing che concorrono alla Verifica e Validazione del

software. Obiettivo dell’insegnamento è favorire l’acquisizione di competenze utili

sia allo sviluppo di software di qualità che per la sua valutazione.

Prerequisiti

Le seguenti conoscenze preliminari facilitano ed accelerano la comprensione degli

argomenti dell’insegnamento:

- da Programmazione II: fondamenti della programmazione ad oggetti (Java),

gestione delle eccezioni in Java, lambda expression e Stream, familiarità di utilizzo

con un ambiente di sviluppo (un IDE, tipo Eclipse, IntelliJ, ecc.).

Contenuti di insegnamento

(Programma)

- Introduzione al Software Testing (5h):

Validazione e Verifica – Terminologia - Come selezionare le tipologie di test più

adeguate - Test automation – La piramide dei test

- Testing Black Box (8h).

Testing basato sui requisiti e sugli scenari dei casi d'uso - Test di tipo funzionale –

identificare test case per i valori soglia (boundary test)

- Testing White Box (8h)

Code coverage - criteri di code coverage - Strumenti per la misura automatica della

copertura del codice - Test di tipo strutturale

- Design Contracts (3h)

Definire le pre-condizioni e post-condizioni nei contratti, differenza tra contratti e

validazione del software

- Property-based testing (5h)

Cosa sono e differenza con i test di tipo strutturale e funzionale

- Mocking framework (3h)

Dummies, fakes, stubs, spies e mocks - Test double

- Static testing (3h)

Differenza tra testing dinamico e statico. Tecniche di testing statico e suoi benefici.

- Test-driven development (TDD) (3h)

Cosa si intende per TDD - Quando usare l’approccio TDD e quando non usarlo

- Design per la testabilità e Qualità del codice di test (5h)

Come scrivere codice di programmazione che favorisca la testabilità dello stesso.

Best practice per la scrittura di codice di test di qualità e che sia manutenibile – Test

smell

- Documentazione di test (1h)

Documento di strategia dei test – Test Plan – Test Design Specification Document

- Integration and System Test (6h)

Testare diversi componenti del software – Testing di SQL e Database – Test di

Sistemi- Analisi costi/benefici

- JUnit (7h):

Introduzione a JUnit - Implementazione di test di unità con JUnit su programmi

Java – Assunzioni e asserzioni – Testing delle eccezioni – Test dinamici e

parametrici – Testing Data Driven con JUnit

- LLM-based testing (2h)

Scrivere codice di test avvalendosi dell’uso di Large Language Models (LLMs) –

Verifica della correttezza del codice – Correzione degli errori

- Integrazione dei Sistemi Software (3h)

Diverse architetture e processi funzionali all’integrazione dei sistemi software (es.

architetture a microservizi)

Testi di riferimento

Testo di riferimento: Effective Software Testing (A developer's guide) Mauricio

Aniche. Manning. ISBN 9781633439931, 2022 (NB: Vengono trattati tutti i capitoli

del libro)

Testo consigliato: G. J. Myers, T. Badgett, C. Sandler. The Art of Software Testing.

Wiley (Cap.1, 2, 4, 20, 21, 22, 24)

Materiale messo a disposizione dal docente su piattaforma e-learning

Gli studenti che lo desiderano possono ottenere i testi in prestito dalla Biblioteca. Può

convenire verificarne la disponibilità mediante il Sistema Bibliotecario di Ateneo

https://opac.uniba.it/easyweb/w8018/index.php? e contattare la biblioteca per

concordare il prestito.

Note ai testi di riferimento

Sono disponibili sulla piattaforma e-learning di UNIBA:

- Slide usate a lezione (caricate dopo ogni lezione)

- Codici degli esercizi svolti durante i laboratori

Il docente indica sempre alla fine delle slide di ogni lezione il testo e il capitolo del

libro a cui la lezione fa riferimento.

Inoltre, sempre alla fine delle slide vengono indicati i riferimenti ad eventuali altri

materiali bibliografici (white paper, articoli scientifici, guide, ecc.), repository di

codice ed eventuali approfondimenti.

Organizzazione della

didattica

Ore

Totali Didattica frontale Pratica (laboratorio, progetto, esercitazione, altro) Studio individuale

150 ore 32 ore 30 ore 88 ore

CFU/ETCS

6 CFU 4 CFU 2 CFU

Metodi didattici

▪ Lezioni frontali condotte con l’ausilio di slide proiettate in aula e rese

disponibili tramite la piattaforma di e-learning;

▪ Svolgimento in aula di due tipologie di esercitazione: (a) esercizi svolti

interamente dal docente con indicazione delle soluzioni; (b) esercitazioni guidate in

cui gli studenti risolvono da soli, ma supervisionati dal docente, problemi relativi al

testing di sistemi software.

Entrambe le tipologie di esercitazione sono svolte con l’obiettivo di acquisire

dimestichezza con le metodologie di software testing da applicare successivamente

al caso di studio da svolgere preferibilmente in gruppo.

Seminari svolti da aziende che illustrano casi di studio reali riguardanti gli argomenti

del corso.

Risultati di

apprendimento

previsti

Conoscenza e capacità di

comprensione

 ▪ Comprensione del concetto di qualità del software e dei concetti di verifica

e validazione dello stesso

▪ Conoscenza delle diverse tecniche di integrazione e testing dei sistemi

software (ad es. white-box e black-box), metodologie di sviluppo (ad es. sviluppo

test driven) e degli strumenti a supporto degli sviluppatori per l’integrazione e testing

di tali sistemi

Conoscenza e capacità di

comprensione applicate

▪ Saper applicare le best practice del software testing per garantire lo sviluppo

di software di qualità (robusto, affidabile, ecc.).

▪ Saper applicare i concetti, le tecniche e le metodologie di integrazione e

testing di sistemi software, nonché utilizzare gli strumenti di supporto agli

sviluppatori.

Competenze trasversali

Autonomia di giudizio

1) Acquisire autonomia di giudizio sulle scelte da effettuarsi relativamente allo

sviluppo di test case suite e alle tecniche di integrazione e testing da adottare.

Abilità comunicative

2) Capacità di comunicare sia in maniera orale che tramite documenti scritti

(ad es. test case suite) la soluzione proposta; saper modulare la comunicazione

rispetto ai diversi stakeholder (tecnici e non) di un progetto software usando la giusta

terminologia.

Capacità di apprendere in modo autonomo

3) Sviluppare capacità di intraprendere in autonomia ulteriori approfondimenti

su argomenti attinenti all’integrazione e testing di sistemi software.

Valutazione

Modalità di verifica

dell’apprendimento

La verifica dei risultati formativi raggiunti avviene durante l’esame finale, che

prevede una prova scritta con domande a risposta chiusa e domande a risposta aperta.

La durata della prova scritta è fissata in circa 1h.

Il voto della prova scritta sarà in trentesimi.

Inoltre, è prevista la presentazione in aula di un lavoro di gruppo (facoltativo):

▪ Si presenta e si discute in maniera critica il lavoro sviluppato in gruppo;

▪ Si verificano le competenze acquisite durante il corso;

▪ Si accertano le capacità espositive dello studente e la capacità di motivare

le scelte progettuali.

Il lavoro di gruppo va concordato con il docente e inizia ad essere sviluppato sotto la

guida del docente durante le ore di laboratorio.

Il lavoro di gruppo è facoltativo e contribuisce, se svolto, alla votazione finale

dell’esame conferendo un bonus da 1 a 3.

Criteri di valutazione

● Conoscenza e capacità di comprensione:

Si valuta attraverso la prova scritta, e l’eventuale lavoro di gruppo, la conoscenza e

la capacità di comprensione da parte dello studente dei concetti, delle tecniche, degli

strumenti e delle metodologie di integrazione e testing di sistemi software affrontati

a lezione

● Conoscenza e capacità di comprensione applicate:

Si valuta attraverso la prova scritta, e l’eventuale lavoro di gruppo, la capacità di

saper applicare le best practice per garantire lo sviluppo di software di qualità, oltre

a saper applicare i concetti, le tecniche e le metodologie di integrazione e testing di

sistemi software, nonché utilizzare gli strumenti di supporto

● Autonomia di giudizio:

Si valuta attraverso la prova scritta, e l’eventuale lavoro di gruppo, la capacità di

effettuare autonomamente scelte relativamente allo sviluppo di test case suite e alle

tecniche di integrazione e testing da adottare.

● Abilità comunicative:

Si valuta attraverso la prova scritta, e l’eventuale lavoro di gruppo, la capacità di

comunicare la soluzione proposta usando la giusta terminologia.

● Capacità di apprendere:

Si valuta attraverso la prova scritta, e l’eventuale lavoro di gruppo, la capacità di

applicare i concetti appresi durante il corso a nuovi casi di test non analizzati a lezione

Criteri di misurazione

dell'apprendimento e di

attribuzione del voto finale

Il voto finale è dato dalla votazione della prova scritta, a cui si sommerà

eventualmente la votazione del lavoro di gruppo, se svolto dallo studente.

Altro
Si suggerisce agli studenti di affidarsi esclusivamente alle

informazioni/comunicazioni fornite sui siti ufficiali del Dipartimento di Informatica,

ovvero sui gruppi social solo se costituiti e amministrati esclusivamente dai docenti

dei relativi insegnamenti:

● https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-

laurea/corsi-di-laurea

● https://www.uniba.it/it/ricerca/dipartimenti/informatica

● https://elearning.di.uniba.it/

I programmi degli insegnamenti sono disponibili qui:

● https://programmi.di.uniba.it/

Le informazioni che tutti gli studenti dovrebbero conoscere sono scritte nei

Regolamenti didattici e manifesti degli studi disponibili nel sito:

● https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-

laurea/corsi-di-laurea

Si suggerisce agli studenti di diffidare delle informazioni e dei materiali circolanti su

siti o gruppi social non ufficiali, poiché spesso sono risultati non affidabili, non

corretti o incompleti. Per ogni dubbio, chiedere un incontro al docente secondo le

modalità previste per il ricevimento.

Link al corso sulla piattaforma e-learning del dipartimento ADA:

https://elearning.di.uniba.it/course/view.php?id=1086

https://elearning.di.uniba.it/course/view.php?id=1086

Main information on the course

Course name Integration and Testing of Software Systems

Degree Computer Science and Software Production Technologies

Academic year 2025/26

European Credit Transfer and Accumulation System

(ECTS), in Italian Crediti Formativi Universitari (CFU)

6 CFU

(each CFU corresponds to 25 hours (h) of student’s time);

CFU are of type T1, T2 or T3

T1 = 32 h lecture

T2 = 30 h practice

T3 = 88 h individual study

Settore Scientifico Disciplinare ING-INF/05

Course language Italian

Course year Third

Course period First Semester - exact dates can be found in the didactic regulations

Course attendance requirement None, but it is highly recommended to attend classes

Website of the Degree

https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-

laurea/informatica-tps-270/laurea-triennale-in-informatica-e-tecnologie-per-la-

produzione-del-software-d.m.-270

Teacher(s)

Name and Surname Azzurra Ragone

email azzurra.ragone@uniba.it

phone +39 080-5443289 (int. 3289)

office
Department of Computer Science, Via Orabona 4, 70125 Bari, Room No. 616, 6th

floor

e-learning platform https://elearning.di.uniba.it/

Teacher’s homepage https://www.uniba.it/it/docenti/ragone-azzurra

Office hours Tuesday 12:00 - 13:00 (by appointment to be arranged via email with the professor)

Syllabus

Course goals

The course aims to introduce the methodologies, strategies, techniques, and tools

for software integration and testing that contribute to software verification and

validation. The goal is to help students acquire skills useful for both developing

quality software and its evaluation.

Prerequisites/requirements

The following preliminary knowledge facilitates and accelerates understanding of the

course topics:

From Programming II: Fundamentals of object-oriented programming (Java),

exception handling in Java, lambda expressions and Streams, familiarity with a

development environment (an IDE like Eclipse, IntelliJ, etc.).

Course program

• Introduction to Software Testing (5h): Validation and Verification –

Terminology - How to select appropriate test types - Test automation – Test

pyramid

• Black Box Testing (8h): Requirement-based and use case scenario testing -

Functional testing – Identifying test cases for boundary values

• White Box Testing (8h): Code coverage - Code coverage criteria - Tools for

automatic measurement of code coverage - Structural testing

• Design Contracts (3h): Defining pre-conditions and post-conditions in contracts

- Difference between contracts and software validation

• Property-based Testing (5h): What they are and how they differ from structural

and functional tests

• Mocking Framework (2h): Dummies, fakes, stubs, spies, and mocks - Test

doubles

• Static Testing (3h): Difference between dynamic and static testing. Static testing

techniques and benefits.

• Test-Driven Development (TDD) (3h): What is TDD - When to use and not use

the TDD approach

• Design for Testability and Quality of Test Code (5h): How to write

programming code that promotes testability. Best practices for writing quality and

maintainable test code – Test smells

• Test Documentation (1h): Test strategy document – Test Plan – Test Design

Specification Document

• Integration and System Test (6h): Testing various software components – SQL

and Database testing – System testing- Cost/benefit analysis

• JUnit (7h): Introduction to JUnit - Implementing unit tests with JUnit on Java

programs – Assumptions and assertions – Exception testing – Dynamic and

parametric testing – Data-driven testing with JUnit

• LLM-based testing (2 hours)

Writing test code using Large Language Models (LLMs) – Verifying code

correctness – Correcting errors

• Software System Integration (3h): Different architectures and processes for

software system integration (e.g., microservices architectures)

Books of reference

• Main text: "Effective Software Testing: A Developer's Guide" by Mauricio

Aniche. Manning, ISBN 9781633439931, 2022 (All chapters of the book are

covered)

• Recommended text: G. J. Myers, T. Badgett, C. Sandler. "The Art of Software

Testing." Wiley (Chapters 1, 2, 4, 20, 21, 22, 24)

• Materials provided by the instructor on the e-learning platform

Notes to the books

Available on the UNIBA e-learning platform:

• Slides used in class (uploaded after each lesson)

• Codes of exercises performed during laboratories

The instructor always indicates at the end of the slides of each lesson the text and

chapter of the book to which the lesson refers. Additionally, at the end of the slides,

references to any other bibliographic materials (white papers, scientific articles,

guides, etc.), code repositories, and any further insights are provided.

Organization of the

didactic activities

Hours

Total Lectures Practice sessions Project work Individual study

150 hours 32 hours 30 hours 0 hours 88 hours

CFU/ETCS

 6 CFU 4 CFU 2 CFU 0 CFU

Teaching methods

• Lectures conducted with the aid of slides projected in class and made available

through the e-learning platform

• Two types of exercises conducted in class: (a) exercises entirely performed by

the instructor with indications of the solutions; (b) guided exercises where students

solve problems related to software system testing independently but supervised by

the instructor. Both types of exercises aim to familiarize with software testing

methodologies to be subsequently applied to case studies, preferably carried out in

groups.

• Seminars conducted by companies illustrating real case studies related to the

course topics.

Expected learning

outcomes

Knowledge and

understanding

• Understanding the concept of software quality and the concepts of verification

and validation.

• Knowledge of various integration and testing techniques for software systems

(e.g., white-box and black-box), development methodologies (e.g., test-driven

development), and tools supporting developers in the integration and testing of

these systems.

Applying knowledge and

understanding

Applying best practices in software testing to ensure the development of quality

software (robust, reliable, etc.).

Applying concepts, techniques, and methodologies of software system integration

and testing and using support tools for developers.

Other skills

Making judgements

Acquiring the autonomy to make decisions regarding the development of test case

suites and the integration and testing techniques to adopt.

Communication

Ability to communicate both orally and in writing (e.g., test case suites) the

proposed solution; ability to modulate communication to the different stakeholders

(technical and non-technical) of a software project using the right terminology.

Learning skills

Developing the ability to undertake further in-depth studies independently on topics

related to the integration and testing of software systems.

Assessment

Assessment methods

The assessment of the learning outcomes achieved is carried out during the final

exam, which includes a written test with closed and open questions.

The duration of the written test is set at about 1 hour.

The grade of the written test will be in thirtieths.

Additionally, there is a presentation in class of a group project (optional):

- presenting and critically discussing the work developed in the group

- verifying the skills acquired during the course;

- assessing the student's presentation skills and the ability to justify design

choices.

The group project must be agreed upon with the instructor and begins to be

developed under the instructor's guidance during lab hours.

The group project is optional and contributes to the final exam score, giving a

bonus of 1 to 3 points if carried out.

Evaluation criteria

• Knowledge and Understanding: Assessed through the written test and the

optional group project, evaluating the student's knowledge and understanding of the
concepts, techniques, tools, and methodologies of software system integration and

testing addressed in class.

• Applied Knowledge and Understanding: Assessed through the written test and

the optional group project, evaluating the ability to apply best practices to ensure

the development of quality software and the ability to apply concepts, techniques,

and methodologies of software system integration and testing, as well as using

support tools.

• Autonomy of Judgment: Assessed through the written test and the optional

group project, evaluating the ability to independently make decisions regarding the

development of test case suites and the integration and testing techniques to adopt.

• Communication Skills: Assessed through the written test and the optional group

project, evaluating the ability to communicate the proposed solution using the right

terminology.

• Learning Skills: Assessed through the written test and the optional group

project, evaluating the ability to apply the concepts learned during the course to

new test cases not analyzed in class.

Measurements and final grade

The final grade is given by the score of the written test plus the possible score of the

group project if carried out by the student.

Further information
Students are advised to rely exclusively on information/communications provided

on the official websites of the Department of Computer Science or on social groups

only if established and managed exclusively by the instructors of the respective

courses:

● https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-

laurea/corsi-di-laurea

● https://www.uniba.it/it/ricerca/dipartimenti/informatica

● https://elearning.di.uniba.it/

Teaching schedules are available here:

● https://programmi.di.uniba.it/

Information that all students should know is written in the Teaching Regulations

and Study Manifestos available on the website:

● https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-

laurea/corsi-di-laurea

Students are suggested to be wary of information and materials circulating on

unofficial sites or social groups, as they are often found to be unreliable, incorrect

or incomplete. If you have any doubts, ask for a meeting with the lecturer in

accordance with the reception arrangements.

Link to the course on the ADA department's e-learning platform:

https://elearning.di.uniba.it/course/view.php?id=1086

