

Principali informazioni sull’insegnamento

Denominazione
dell’insegnamento Linguaggi di Programmazione

Corso di studio Informatica (track N-Z)

Anno Accademico 2025/26

Crediti formativi universitari (CFU) / European
Credit Transfer and Accumulation System (ECTS)

9 CFU

Settore Scientifico Disciplinare INFO-01/A

Lingua di erogazione Italiano

Anno di corso Primo

Periodo di erogazione 2° semestre, le date esatte sono riportate nel manifesto/regolamento

Obbligo di frequenza La frequenza è fortemente raccomandata

Sito web del corso di studio
https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-
laurea/corsi-di-laurea

Docente/i

Nome e cognome Marco de Gemmis

Indirizzo mail marco.degemmis@uniba.it

Telefono 080-5443283

Sede
Dipartimento di Informatica, Via Orabona 4, 70125, Bari. Stanza n.761, 7° piano.

Sede virtuale Piattaforma e-learning UNIBA - https://elearning.uniba.it/

Sito web del docente
https://www.uniba.it/it/docenti/degemmis-marco

Ricevimento (giorni, orari e
modalità, es. su appuntamento)

Su appuntamento

Syllabus

Obiettivi formativi

L’insegnamento si propone di introdurre:
● i fondamenti teorici dei linguaggi di programmazione;
● le tecniche sottostanti la progettazione dei linguaggi di programmazione.
Studenti/esse acquisiranno la conoscenza della teoria dei linguaggi formali, saranno
in grado di comprendere i meccanismi secondo i quali si implementa un linguaggio
di programmazione e sapranno associare le operazioni svolte dal compilatore ai
fondamenti teorici dei linguaggi formali.

Prerequisiti

Le seguenti conoscenze preliminari facilitano ed accelerano la comprensione degli
argomenti dell’insegnamento:
● da Programmazione: basi della programmazione imperativa, ricorsione, processo

di compilazione;
● da Matematica Discreta: teoria degli insiemi, relazioni, principio di induzione,

strutture algebriche elementari (in particolare, concetto di monoide libero),
dimostrazioni di tipo induttivo e deduttivo, definizione di funzione iniettiva,
suriettiva, biettiva.

● Raccomandazione: al fine colmare eventuali lacune rispetto ai prerequisiti, si
suggerisce di consultare il materiale didattico relativo al precorso di “Linguaggi
di Programmazione” disponibile nella piattaforma: https://elearning.uniba.it/

Contenuti di insegnamento
(Programma)

La numerazione degli argomenti ne indica l’ordine di presentazione e di studio.
Inoltre, l’indice di ogni argomento è utile per ritrovare i relativi contenuti nei testi di
riferimento.

1. Introduzione ai linguaggi di programmazione ed ai linguaggi formali:
Problemi, Macchine di Turing, cenni a calcolabilità e linguaggi di programmazione.
Interpretazione e compilazione. Gerarchia di linguaggi di programmazione e di
macchine astratte. Aree di ricerca dell'informatica teorica, panoramica su e relazioni
tra sintassi e semantica, alberi di derivazione. Regole di produzione, esempi di
linguaggi formali.
Ore lezione frontale: 9
Ore esercitazione in aula: 1

2. Grammatiche generative:
Linguaggi formali e monoidi liberi generati da un insieme. Generazione e
riconoscimento di linguaggi formali. Esempi di grammatiche generative. Correttezza
di una grammatica.
Ore lezione frontale: 9
Ore esercitazione in aula: 1

3. Linguaggi liberi da contesto e linguaggi dipendenti da contesto:
Definizioni ed esempi di linguaggi liberi da contesto. Definizioni ed esempi di
linguaggi dipendenti da contesto. Grammatiche e linguaggi monotoni.
Ore lezione frontale: 3
Ore esercitazione in aula: 1

4. Linguaggi liberi da contesto:
Alberi di derivazione. Principio di sostituzione di sottoalberi. Pumping lemma per i
linguaggi liberi da contesto.
Ore lezione frontale: 9
Ore esercitazione in aula: 9, comprensive di ore per la preparazione alla prova in
itinere

5. Grammatiche e macchine:
Classificazione delle grammatiche secondo Chomsky. Teorema della Gerarchia di
Chomsky.
Operazioni sui linguaggi e proprietà di chiusura delle classi di linguaggi rispetto alle
operazioni.

Ore lezione frontale: 14
Ore esercitazione in aula: 6

6. Automi:
Automi a stati finiti deterministici e non deterministici. Linguaggi a stati finiti.
Ore lezione frontale: 3
Ore esercitazione in aula: 2

7. Linguaggi regolari ed espressioni regolari:
Definizioni e proprietà delle espressioni regolari.
Teorema di Kleene. Pumping Lemma per i linguaggi regolari.
Ore lezione frontale: 7
Ore esercitazione in aula: 10, comprensive di ore per la preparazione alla prova scritta
finale.

8. Modello del compilatore:
Analizzatore lessicale, analizzatore sintattico, analizzatore semantico, generazione e
ottimizzazione del codice. Tabella dei simboli.
Ore lezione frontale: 2

Testi di riferimento

1. [Semeraro] G. Semeraro. Elementi di teoria dei linguaggi formali, ilmiolibro.it

(2017).
http://ilmiolibro.kataweb.it/libro/informatica-e-internet/317883/elementi-di-
teoria-dei-linguaggi-formali

2. [Gabrielli] M. Gabbrielli, S. Martini. Linguaggi di Programmazione, Principi e
paradigmi. 2/ed., McGraw-Hill (2011).

3. [Hopcroft] J. E. Hopcroft, R. Motwani, J. D. Ullman. Automi, Linguaggi e
calcolabilità. Pearson (2018).

Nella sezione seguente è specificata in dettaglio la corrispondenza tra gli argomenti
del programma ed i capitoli dei testi di riferimento.
Studenti/esse che lo desiderano possono ottenere i testi in prestito dalla Biblioteca.
Si suggerisce di verificare la disponibilità dei testi mediante il Sistema Bibliotecario
di Ateneo e contattare la biblioteca per concordare il prestito.

Note ai testi di riferimento

Si specificano di seguito, per ogni argomento del programma, i capitoli dei testi dai
quali studiare.

Si specificano di seguito, per ogni argomento del programma, i capitoli dei testi dai
quali studiare.

1. Introduzione ai linguaggi di programmazione ed ai linguaggi formali:

[Gabbrielli] Capitolo 1; [Semeraro] Capitolo 1.
[Hopcroft] Capitolo 8.

2. Grammatiche generative:

[Semeraro] Capitoli 1 e 2.

3. Linguaggi liberi da contesto e linguaggi dipendenti da contesto:
[Semeraro] Capitolo 3.

4. Linguaggi liberi da contesto:
[Semeraro] Capitolo 4.
[Hopcroft] Capitoli 5 e 6.

5. Grammatiche e macchine:
[Semeraro] Capitolo 5.

[Hopcroft] Appendice A

6. Automi:
[Semeraro] Capitolo 6.
[Hopcroft] Capitoli 1 e 2.

7. Linguaggi regolari ed espressioni regolari:
[Semeraro] Capitolo 7.
[Hopcroft] Capitoli 3 e 4.

8. Modello del compilatore:
[Gabrielli] Capitoli 2, 3 e 4 per approfondimenti su analisi lessicale e sintattica.

Per ogni argomento è inoltre disponibile una dispensa, corrispondente ai contenuti
mostrati in aula durante le lezioni, che non è sostitutiva dei testi di riferimento.
Elenco del materiale disponibile su piattaforma di e-learning UNIBA
https://elearning.uniba.it/:
● dispense in formato pdf degli argomenti del programma;
● esercizi con relative soluzioni;
● tracce di esempio delle prove d’esame, alcune delle quali con relative soluzioni
● tracce di esempio della prova in itinere.

Organizzazione della
didattica

Ore

Totali Didattica frontale Pratica (esercitazione) Studio individuale

225 ore 56 ore 30 ore 139 ore

CFU/ETCS

9 CFU 7 CFU 2 CFU

Metodi didattici

● Lezioni frontali condotte con l’ausilio di dispense proiettate in aula e rese

disponibili tramite piattaforma di e-learning UNIBA prima delle lezioni;
● Svolgimento in aula di due tipologie di esercitazione: (a) esercizi svolti

interamente dal docente con indicazione delle soluzioni; (b) esercitazioni guidate
in cui gli studenti risolvono insieme al docente quesiti simili a quelli da affrontare
nelle prove d’esame.

● Entrambe le tipologie di esercitazione sono svolte con l’obiettivo di acquisire
dimestichezza con i modelli di computazione (grammatiche, automi, etc.) utili
alla classificazione, alla generazione ed al riconoscimento di linguaggi formali.

Risultati di
apprendimento
previsti

Conoscenza e capacità di
comprensione

● Comprensione della relazione tra problemi, algoritmi, linguaggi formali e

linguaggi di programmazione;
● Comprensione della Teoria dei Linguaggi Formali;
● Conoscenza delle tecniche di analisi e traduzione dei linguaggi di

programmazione;
● Conoscenza dei fondamenti teorici alla base delle componenti di analisi e

traduzione dei linguaggi di programmazione (scanner, parser).

Conoscenza e capacità di
comprensione applicate

● Capacità di classificare un linguaggio formale nella gerarchia di Chomsky;
● Capacità di generare, descrivere e riconoscere un linguaggio formale.

Competenze trasversali

Autonomia di giudizio
● Capacità di valutare la correttezza della soluzione proposta ai problemi relativi

alla teoria dei linguaggi formali

Abilità comunicative
● Capacità di formalizzare e comunicare la soluzione proposta a problemi relativi

alla teoria dei linguaggi formali

Capacità di apprendere in modo autonomo
● Capacità di associare un problema pratico ai modelli appresi (ad esempio

riconoscimento di stringhe o frasi in linguaggio naturale mediante espressioni
regolari)

Valutazione

Modalità di verifica
dell’apprendimento

Prova d’esame
L’esame consiste in una prova scritta, nella quale si richiede di rispondere alle
seguenti tipologie di quesiti:
● svolgimento di esercizi sulla teoria dei linguaggi formali;
● enunciazione di definizioni sulla teoria dei linguaggi formali;
● dimostrazione di teoremi della teoria dei linguaggi formali;
● quesiti aperti sul modello di compilatore.

Regolamentazione della prova d’esame:
● La prova d’esame consisterà nella risoluzione di 3 quesiti;

● durata della prova: varia tra 60 e 90 minuti, in base alla tipologia di quesiti da
risolvere;

● materiale consultabile: tavola relativa alle proprietà di chiusura dei linguaggi,
elenco delle proprietà delle espressioni regolari;

● la valutazione è espressa in trentesimi;
● comunicazione dei risultati: sistema esse3.

Prova intermedia
È una prova scritta, NON obbligatoria, riguardante una specifica parte del
programma indicata dal docente in prossimità dell’interruzione delle lezioni stabilita
da Regolamento Didattico e Manifesto degli Studi. Si richiede:
● esecuzione di due esercizi sulla teoria dei linguaggi formali.

Regolamentazione della prova intermedia:
● durata della prova: 60 minuti;
● materiale consultabile: nessuno;
● la prova è soggetta ad autovalutazione: il docente fornirà le soluzioni e le

indicazioni per assegnare una valutazione ad ogni errore commesso (grave/non
grave). La valutazione finale, in base agli errori commessi, potrà essere
sufficiente/insufficiente;

● Il superamento della prova intermedia NON esonera lo studente dallo
svolgimento di una parte della prova d’esame. L’obiettivo della prova è quello di
dare un riscontro allo studente sul proprio livello di comprensione degli
argomenti dell’insegnamento. Dopo la prova intermedia, si suggerisce di
contattare il docente per un ricevimento in caso di dubbi.

Simulazione prova d’esame
Al termine delle lezioni, si terrà una simulazione della prova d’esame, che consisterà
nell’esecuzione di esercizi tratti da prove d’esame precedenti. Gli esercizi saranno
svolti in autonomia nel tempo solitamente concesso in sede d’esame in modo da avere
un riscontro della propria preparazione prima dell’esame. Al termine della prova, il
docente fornirà le relative soluzioni.

Criteri di valutazione

● Conoscenza e capacità di comprensione:

o Capacità di enunciare con rigore definizioni e teoremi della teoria dei
linguaggi formali;

o Capacità di descrivere con precisione e chiarezza le tecniche ed i
fondamenti teorici alla base dei meccanismi di analisi e traduzione dei
linguaggi di programmazione.

● Conoscenza e capacità di comprensione applicate:
o Capacità di applicare i teoremi della teoria dei linguaggi formali alla

soluzione di problemi;
o Capacità di classificare un linguaggio formale nella gerarchia di

Chomsky, mediante la costruzione di una dimostrazione formale;
o Capacità di generare, descrivere e riconoscere un linguaggio formale,

mediante la costruzione di grammatiche, la definizione di espressioni
regolari, e la progettazione di opportune macchine.

● Autonomia di giudizio:
o Modalità adottate per la verifica delle soluzioni proposte (ad esempio,

verifica di correttezza di una grammatica).

● Abilità comunicative:
o Chiarezza nella descrizione delle soluzioni proposte ai quesiti.

● Capacità di apprendere:

o Capacità di astrazione, di ragionamento per analogia e dimostrazione di
creatività nella risoluzione dei quesiti.

Criteri di misurazione
dell'apprendimento e di
attribuzione del voto finale

Prova d’esame
La valutazione della prova è espressa in trentesimi.
Ad ogni quesito da svolgere sarà attribuito un punteggio, assicurando che la somma
dei punteggi sia pari a 30 (ad esempio, 3 quesiti ad ognuno dei quali sono attribuiti
10 punti).
La determinazione del voto attribuito alla risposta data ad ogni quesito tiene conto
dei seguenti criteri:

1) la correttezza della soluzione, della dimostrazione formale, o della
definizione fornita;
2) la completezza della soluzione, della dimostrazione formale o della
definizione fornita;
3) la logica seguita dallo studente nel proporre la soluzione o la dimostrazione
formale;
4) l’utilizzo di un adeguato formalismo per la descrizione della soluzione, della
dimostrazione o della definizione.

Per ottenere una valutazione sufficiente, la risposta fornita al quesito deve soddisfare
almeno il criterio 1). I voti superiori alla sufficienza sono attribuiti se le soluzioni
proposte soddisfano anche gli altri criteri.
Il voto finale è dato dalla somma dei punteggi ottenuti sui singoli quesiti.
La prova è superata con voto maggiore o uguale a 18.
Attribuzione della lode: la lode è attribuita quando la logica seguita dallo studente
del proporre la soluzione evidenzi particolari capacità di astrazione, ragionamento
per analogia, creatività.

Prova intermedia
I criteri adottati per la valutazione della prova intermedia sono gli stessi 1)-4) della
prova finale. Il voto potrà essere sufficiente/insufficiente.
L’esito della prova intermedia NON concorre alla valutazione finale.

Altro

Si suggerisce agli studenti di affidarsi esclusivamente alle
informazioni/comunicazioni fornite sui siti ufficiali del Dipartimento di Informatica,
ovvero sui gruppi social solo se costituiti e amministrati esclusivamente dai docenti
dei relativi insegnamenti:

● https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-

laurea/corsi-di-laurea
● https://www.uniba.it/it/ricerca/dipartimenti/informatica

I programmi degli insegnamenti sono disponibili al seguente URL:
● Piano di studi e schede insegnamenti

Le informazioni che tutti gli studenti dovrebbero conoscere sono scritte nei
Regolamenti Didattici e Manifesti degli studi disponibili sul sito:
● https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-

laurea/corsi-di-laurea

Si suggerisce agli studenti di diffidare dalle informazioni e dei materiali circolanti
su siti o gruppi social non ufficiali, poiché spesso sono risultati non affidabili, non

corretti o incompleti. Per ogni dubbio, fissare un incontro con il docente secondo le
modalità previste per il ricevimento.

Link all’insegnamento nella piattaforma di e-learning:
https://elearning.uniba.it/course/view.php?id=12881

Suggerimenti per una corretta preparazione, in particolare per studenti/esse
non frequentanti:
1) Studiare gli argomenti teorici nell’ordine suggerito prima di cimentarsi negli

esercizi. L’ordine con il quale sono presentati gli argomenti è fondamentale per
la comprensione degli stessi. Tentare di risolvere gli esercizi apprendendo solo
dalle tracce di esempio e relative soluzioni non consente di acquisire le basi
culturali per poter superare l’esame.
Comprendere perché si arriva ad una certa soluzione è molto più importante
che svolgere molti esercizi senza comprenderne del tutto le basi teoriche.

2) Svolgere gli esercizi, dei quali sono fornite le soluzioni, disponibili sulla
piattaforma di e-learning, in modo da confrontare le proprie soluzioni con
quelle fornite dal docente.

3) Svolgere gli esercizi tratti da prove d’esame per valutare la propria
preparazione.

4) Contattare il docente per eventuali chiarimenti e/o verificare le proprie
soluzioni agli esercizi svolti in autonomia prima di iscriversi alla prova
d’esame.

5) In caso di mancato superamento della prova, contattare il docente per la
revisione del proprio elaborato e la comprensione degli errori commessi.

Main information on the course

Course name Programming Languages

Degree Informatics (track N-Z)

Academic year 2025/26

European Credit Transfer and Accumulation System
(ECTS), in Italian Crediti Formativi Universitari (CFU)

9 CFU
(each CFU corresponds to 25 hours (h) of student’s time);
CFU are of type T1, T2 or T3
T1 = 8 h lecture + 17 h individual study
T2 = 15 h practice + 10 h individual study
T3 = 25 h individual study

Settore Scientifico Disciplinare
Course language Italian
Course year First
Course period Second Semester - exact dates can be found in the didactic regulations
Course attendance requirement None, but it is highly recommended to attend classes

Website of the Degree https://www.uniba.it/it/corsi/informatica/corso-di-laurea-in-informatica

Teacher(s)

Name and Surname Marco de Gemmis
email marco.degemmis@uniba.it
phone 080-5443283

office
Department of Computer Science, Campus, Via E. Orabona 4, 70126, Bari. office
n.761, 7th floor.

e-learning platform UNIBA e-learning platform - https://elearning.uniba.it/
Teacher’s homepage https://www.uniba.it/it/docenti/degemmis-marco
Office hours students are required to send an email to the instructor to ask for an appointment.

Syllabus

Course goals

The course aims to introduce:
● the theoretical foundations of programming languages;
● the techniques underlying the design of programming languages.

The student will acquire the knowledge of the theory of formal languages, will be
able to understand the mechanisms according to which a programming language is
implemented and will be able to associate the operations carried out by the
compiler to the theoretical foundations of formal languages.

Prerequisites/requirements

The following preliminary knowledge facilitates and accelerates the understanding
of the topics of the course:
● from “Programming”: basics of imperative programming, recursion, compilation

process.
● from “Discrete Mathematics”: set theory, relations, principle of induction,

elementary algebraic structures (in particular, concept of monoid and free
monoid generated by a set), inductive and deductive proofs, definition of
injective, surjective, bijective function.

● Recommendation: in order to fill any gaps with respect to prerequisites, it is
suggested to consult the teaching materials related to the "Programming
Languages" pre-course available in the platform: https://elearning.uniba.it/

Course program

The numbering of topics indicates their order of presentation and study.
In addition, the index of each topic is useful for finding the related content in
reference texts.

1. Introduction to programming languages and formal languages:

Problems, Turing machines, computability and programming languages.
Interpreters and compilers. Hierarchy of programming languages and abstract
machines. Research areas of theoretical computer science, overview of and
relationships between syntax and semantics, derivation trees. Production rules,
examples of formal languages.

Lecture: 9
Hands-on: 1

2. Generative grammars:

Formal languages and free monoids generated by a set. Generation and
recognition of formal languages. Generative grammars. Examples of generative
grammars. Derivations. Correctness of a grammar.

Lecture: 9
Hands-on: 1

3. Context-free languages and context-dependent languages:

Definitions and examples of context-free languages. Definitions and examples
of context-dependent languages. Monotonous grammars and languages.

Lecture: 3
Hands-on: 1

4. Context-free languages:

Derivation trees. Subtree replacement principle. Pumping lemma for context free
languages.

Lecture: 9
Hands-on: 9, including hours for preparation for the mid-term test.

5. Grammars and machines:

Classification of grammars according to Chomsky. Chomsky's Hierarchy
Theorem. The empty string lemma. Operations on languages and closure
properties of language classes with respect to the operations.

Lecture: 14
Hands-on: 6

6. Automata:

Deterministic and non-deterministic finite state automata. Finite state
languages.

Lecture: 3
Hands-on: 2

7. Regular languages and regular expressions:

Definitions and properties of regular expressions. Kleene's theorem. Pumping
Lemma for regular languages.

Lecture: 7
Hands-on: 10, including hours for preparation for the mid-term test.

8. Compiler model:

Lexical analyzer, syntactic analyzer, semantic analyzer, code generation and
optimization. Symbol table.

Lecture: 2

Books of reference

1. [Semeraro] G. Semeraro. Elementi di teoria dei linguaggi formali,
ilmiolibro.it (2017),
http://ilmiolibro.kataweb.it/libro/informatica-e-internet/317883/elementi-di-
teoria-dei-linguaggi-formali

2. [Gabrielli] M. Gabbrielli, S. Martini. Linguaggi di Programmazione, Principi
e paradigmi. 2/ed., McGraw-Hill (2011).

3. [Hopcroft] J. E. Hopcroft, R. Motwani, J. D. Ullman. Automi, Linguaggi e
calcolabilità. Pearson (2018).

The following section details the correspondence between the program topics and the
chapters of the reference books.
Students can obtain the books on loan from the Library. It is suggested that students
check whether the texts are available through the University Library System
https://opac.uniba.it/easyweb/w8018/index.php? and contact the library to arrange
borrowing.

Notes to the books

The chapters of the texts from which to study are specified below for each topic in
the program.

1. Introduction to programming languages and formal languages:

[Gabbrielli] Chapter 1; [Semeraro] Chapter 1.
[Hopcroft] Chapter 8.

2. Generative grammars:
[Semeraro] Chapters 1 and 2.

3. Context-free languages and context-dependent languages:
[Semeraro] Chapter 3.

4. Context-free languages:
[Semeraro] Chapter 4.
[Hopcroft] Chapters 5-6.

5. Grammars and machines:

[Semeraro] Chapter 5.

6. Automata:
[Semeraro] Chapter 6.
[Hopcroft] Chapters 1-2.

7. Regular languages and regular expressions:
[Semeraro] Chapter 7.
[Hopcroft] Chapters 3-4.

8. Compiler model:
[Gabrielli] Chapters 2, 3 and 4 for further information on lexical and syntactic
analysis.

A handout is also available for each topic, corresponding to the content projected in
the classroom during lectures, which is not a substitute for the reference books.
List of materials available on e-learning platform https://elearning.uniba.it/:
● pdf handouts of the program topics;
● exercises with solutions;
● samples of the exam tests, some of them with solutions
samples of the mid-term tests.

Organization of the
didactic activities

Hours

Total Lectures Practice sessions Project work Individual study
225 56 30 0 139
CFU/ETCS
 9 7 2 0

Teaching methods

● Classes given with the help of slides made available through the e-learning

platform before classes;
● Two types of exercises carried out in practice sessions:

(a) exercises carried out by the professor;
(b) guided exercises in which students solve, with the professor, problems to be

addressed in the exam test.
Both types of exercises are carried out with the aim of acquiring familiarity with
computation models (grammars, automata, etc.) useful for the classification,
generation and recognition of formal languages.

Expected learning
outcomes

Knowledge and
understanding

● Understanding of the relationship between problems, algorithms, formal
languages and programming languages;

● Understanding of the Theory of Formal Languages;
● Knowledge of analysis and translation techniques of programming languages;
● Knowledge of the theoretical foundations underlying analysis and translation

components of programming languages (scanner, parser).

Applying knowledge and
understanding

● Ability to classify a formal language in the Chomsky hierarchy;
● Ability to generate, describe and recognize a formal language.

Other skills

Autonomy of judgment
● Ability to evaluate the correctness of the proposed solution to problems related

to the theory of formal languages.

Communication skills
● Ability to formalize and communicate the proposed solution to problems related

to the theory of formal languages.

Ability to learn independently

 Ability to associate a practical problem with learned models (e.g.
recognition of strings or sentences in natural language using regular
expressions).

Assessment

Assessment methods

Exam
The exam consists of a written test, in which it is required to answer the following
types of questions:
● carrying out exercises on the theory of formal languages;
● enunciation of definitions on the theory of formal languages;

● proof of theorems on the theory of formal languages;
● open questions about the compiler model.

Regulation of the exam:
● the exam consists of three questions;
● duration of the test: it varies between 60 and 90 minutes, depending on the type

of problems to be solved;
● material that can be consulted during the test: table relating to the closure

properties of languages, list of properties of regular expressions;
● the evaluation is expressed in thirtieths;
● publication of results: ESSE3 platform.

Mid-term partial exam
It is a written test, NOT mandatory, concerning a specific part of the syllabus
indicated by the instructor around the time of the break in lectures established by the
Didactic Regulations and the Course Catalogue.
The test requires:
● completion of two exercises on the theory of formal languages.

Regulations for the midterm test:
● Duration: 60 minutes;
● Allowed materials: none;
● The test is self-assessed: the instructor will provide the solutions and guidelines

for assigning a grade to each error made (serious / non-serious). The final
evaluation, based on the errors committed, may be pass or fail;

● Passing the midterm test does NOT exempt the student from taking part of the
final exam. The purpose of the test is to provide feedback to the student on their
level of understanding of the course topics. After the midterm test, it is
recommended to contact the instructor during office hours in case of any doubts.

Exam test simulation
At the end of the lessons there will be a simulation of the exam, which will consist
in the execution of exercises taken from previous exam tests. The exercises will be
carried out independently by the students in the time usually allowed during the
exam in order to have a feedback of their preparation before the exam. The
professor will provide the solutions at the conclusion of the test.

Evaluation criteria

● Knowledge and understanding:
o Ability to rigorously enunciate definitions and theorems of the theory

of formal languages;
o Ability to describe with accuracy and clarity the techniques and

theoretical foundations underlying the mechanisms of analysis and
translation of programming languages.

● Applied knowledge and understanding:
o Ability to apply the theorems of the theory of formal languages to

problem solving;
o Capacità di classificare un linguaggio formale nella gerarchia di

Chomsky, mediante la costruzione di una dimostrazione formale
Ability to classify a formal language in the Chomsky hierarchy, by
constructing a formal proof;

o Ability to generate, describe and recognize a formal language, through
the construction of grammars, the definition of regular expressions, and
the design of appropriate machines.

● Autonomy of judgment:
o Methods adopted for the verification of the proposed solutions (for

example, verification of correctness of a grammar).
● Communication skills:

o Clarity of the proposed solutions to the questions.
● Learning skills:

o Ability to abstract, reasoning by analogy and demonstration of creativity in
solving questions.

Measurements and final grade

Exam test
The evaluation of the exam test is expressed over a 30-point scale.
Each question to be completed will be assigned a score, ensuring that the sum of the
scores is equal to 30 (for example, 3 questions, each of which is assigned 10 points).
The determination of the grade attributed to the answer given to each question
considers the following criteria:

1) the correctness of the solution, formal proof, or definition provided;
2) the completeness of the solution, formal proof, or definition provided;
3) the logic followed by the student in proposing the solution or formal

demonstration;
4) the use of an adequate formalism for the description of the solution,

demonstration or definition.

To obtain a sufficient grade (18/30), the answer provided to the question must satisfy
at least criterion 1). Higher grades are awarded if the proposed solutions also satisfy
the other criteria.
The final grade is given by the sum of the scores obtained on the individual questions.
The test is passed with a grade greater than or equal to 18.
Attribution of honors: honors are awarded when the logic followed by the student in
proposing the solution or formal proof highlights particular capacities of
abstraction, reasoning by analogy, creativity.

Mid-term partial exam
The criteria adopted for the evaluation of the mid-term partial exam are the same as
1)-4) of the final exam. The grade may be sufficient/insufficient.
The result of the mid-term partial exam does NOT contribute to the final grade.

Further information

It is suggested that students rely exclusively on the information/communication
provided on the official websites of the Department of Computer Science, or on social
groups only if they are established and administered exclusively by the faculty
members of the relevant subjects:

● https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-

laurea/corsi-di-laurea
● https://www.uniba.it/it/ricerca/dipartimenti/informatica
● https://mariscuola-ta.corsi.marina.difesa.it/

The programs of the courses are available at the following URL:
● Elenco dei Programmi del Corso di Studi in Informatica

Information that all students need to know is available in the Didactic Regulations
and Study Prospectus available on the website:
● https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-

laurea/corsi-di-laurea

Students are suggested to be wary of information and materials circulating on
unofficial sites or social groups, as they are often found to be unreliable, incorrect
or incomplete. For any doubts, arrange a meeting with the teachers in accordance
with the reception arrangements.

Link to the course on the e-learning platform:

https://elearning.uniba.it/course/view.php?id=12881

Tips for proper preparation, especially for non-attending students:
1) Study the theoretical topics in the suggested order before engaging in the

exercises. The order in which the topics are presented is fundamental for
understanding them. Trying to solve the exercises by learning only from the
example exam tests and related solutions does not allow the student to acquire
the cultural bases to be able to pass the exam.
Understanding the reasons that led to a certain solution is much more important
than doing many exercises without fully understanding the theoretical bases.

2) Carry out the exercises, whose solutions are provided by the instructor on the e-
learning platform, in order to compare your own solutions with those provided
by the teacher.

3) Carry out the exercises taken from exam tests to evaluate your preparation.
4) Contact the instructor for any clarifications and / or verify your solutions to the

exercises carried out independently before registering for the exam.
In case of failure to pass a test, contact the instructor for the revision of your test
and the understanding of the errors made.

