Denominazione .
. Programmazione
dell’insegnamento
Corso di studio Informatica
Anno Accademico 2025/26
Crediti formativi universitari (CFU) / European Credit 12 CFU
Transfer and Accumulation System (ECTS)
Se?tto.re .Sc1ent1ﬁco INF/O1
Disciplinare
Lingua di erogazione Italiano
Anno di corso Primo
Periodo di erogazione 1" semestre, le date esatte sono riportate nel manifesto/regolamento
Obbligo di frequenza La frequenza ¢ fortemente raccomandata

Sito web del corso di https://www.uniba.it/it/corsi/informatica/corso-di-laurea-in-informatica/

studio

INome e cognome Pasquale Ardimento

Indirizzo mail pasquale.ardimento@uniba.it

Telefono

Sede Dipartimento di Informatica, Via Orabona 4, 70125, Bari. Stanza n.569, V piano.
Sede virtuale Piattaforma ADA - https://elearning.di.uniba.it/

Sito web del docente https://www.uniba.it/it/docenti/ardimento-pasquale/

Ricevimento Martedi 14:30 — 15:30, o in altro giorno previo appuntamento per e-mail

11 corso si propone di introdurre la metodologia del problem solving e gli elementi base della|

programmazione imperativa strutturata per formulare soluzioni algoritmiche a problemi di
Obiettivi formativi varia complessita. In particolare, lo studente acquisira la capacita di applicare le tecniche del
problem solving, di individuare strategie di soluzione di natura algoritmica e di usare il
linguaggio di programmazione C per implementarle.
Non ¢ richiesto alcun prerequisito in quanto trattasi di un insegnamento del primo semestre
del primo anno.

Prerequisiti

Mod [Argomenti (I’indicazione oraria si intende stimata) Ore

Presentazione del corso, contenuti, modalita d'esame, frequenza alle
1 |lezioni, orari, modalita di esercitazione in aula, ecc. 2

. Introduzione alla Programmazione: dal problema al programma
Contenuti di

insegnamento 2
(Programma)

L’algoritmo come astrazione. Le proprieta dell’algoritmo

11 Problem Solving e la fase di analisi

L’analisi del problema. La formulazione del problema e le sue
3 [specifiche. I dati del problema. I risultati attesi. Gli errori e i casi 5
limite. Ambiguita, limiti dei valori e controlli dei dati. Esempi ed
esercizi.

https://www.uniba.it/it/corsi/informatica/corso-di-laurea-in-informatica/
https://elearning.di.uniba.it/
https://www.uniba.it/it/docenti/ardimento-pasquale/

11 Problem Solving e la fase di progettazione
La scomposizione del problema in sottoproblemi. Le tecniche: topdown,
bottom-up, ibrida.

4 La costruzione del metodo solutivo. La rappresentazione dell’algoritmo 10
mediante linguaggi di rappresentazione: i diagrammi di flusso strutturati,
il linguaggio lineare, I’albero di decomposizione, i
diagrammi di Nassi-Schneidermann. Il teorema di Bohm-Jacopini:
enunciato.

Esempi ed esercizi.
Problemi semplici e problemi complessi. Scomposizione sequenziale,

5 |selettiva, iterativa e ricorsiva. 4
Esempi ed esercizi.

Il programma. Le variabili. Tipi di istruzione. Istruzioni dichiarative.

6 Istruzioni di ingresso-uscita. Istruzione di assegnazione. Espressioni 4
aritmetiche. Espressioni logiche. Costanti. Strutture di controllo. Esempi
ed esercizi.

Algoritmi elementari: conteggio, sommatoria ¢ media di un insieme di

7 |numeri, fattoriale, conversione da caratteri a numeri in base 10, numero| 4
primo, massimo comun divisore, serie di Fibonacci, scambio.

Tipi di dati. La dichiarazione di tipo. Tassonomia dei tipi di dato. Tipi

8 . . e , . 4
standard. Tipi semplici definiti dall’utente: enumerativo, subrange.

Tipi di dati. Tipi strutturati. Dato strutturato e tipo Array. Struttura di dati
e tipo Record. Rappresentazione interna degli array e dei record.

9 |Gli indici degli array. 6
Esempi ed esercizi.

Esercitazione e preparazione alla prova di autovalutazione: analisi di

10 problemi, scomposizione in sottoproblemi, progettazione algoritmica)
della soluzione. Attivita partecipativa cooperativa svolta con ’assistenzal
del docente

1 Esercitazione per autovalutazione: risoluzione di un problema secondo le| 3
fasi del problem solving escluso la codifica.

12 |Auto correzione prova di autovalutazione assistita dal docente 1
La programmazione modulare. [sottoprogrammi. Utilita dei
sottoprogrammi. Sottoprogramma come astrazione funzionale. Struttura

13 |risultante di un programma. La chiamata dei sottoprogrammi.| 6
Nidificazione.

Esempi.
La comunicazione dei sottoprogrammi con [’ambiente esterno ¢
I’ambiente chiamante. La vista di un sottoprogramma. L’effetto

14 |shadowing. Variabili globali, locali e non locali. Le regole di visibilita.| 2

L’ambito e la durata delle variabili.
Esempi ed esercizi.
I sottoprogrammi. Allocazione statica e allocazione dinamica. Il side

15 |effect. Il contour model. 2
Esempi.

Sottoprogrammi. I parametri effettivi e i parametri formali. Modalita di
passaggio dei parametri: per valore, per referenza e per nome.

16 Valutazione e confronto tra le modalita di passaggio. 3
Esempi ed esercizi.

Sottoprogrammi. Le procedure. Intestazione e chiamata delle procedure.

17 [Esempi ed esercizi. 2
Sottoprogrammi. Le funzioni. Intestazione e chiamata delle funzioni.

18 |Procedure vs funzioni. 3

Esempi ed esercizi.

Lezioni frontali, esercitazioni ed attivita autonome e di gruppo in aula e a casa (come
dettagliato nel programma). Gli studenti non frequentanti possono lavorare singolarmente
prendendo accordi con il docente.

Sottoprogrammi. Sottoprogrammi come parametri. Attivazione dei
sottoprogrammi. I record di attivazione e lo stack. La concatenazione
statica e la concatenazione dinamica. La gestione dell’esecuzione. Esempi
ed esercizi.

La ricorsione. Funzioni ricorsive. Gestione dell’esecuzione con le
20 |[funzioni ricorsive. 4
Esempi ed esercizi.

19

Algoritmi fondamentali: Algoritmi su array: stampa istogrammi mediante
21 |array, elimina duplicati su array ordinati. Algoritmi su matrici. Ricerca 3
lineare. Ricerca binaria. Fusione di array. Esempi ed esercizi

Algoritmi di ordinamento: sort per selezione, per scambio, per inserzione.

22 Algoritmi ricorsivi: Fattoriale.

Struttura dei programmi C. Tipi di dati: semplici predefiniti —int, float,

23 ouble e char-, enumerazione esplicita dei valori. Definizione di tipo.

Tipi strutturati in C:
24 |il costruttore array, il costruttore struct ed il costruttore puntatore| 4
Compatibilita dei tipi.

Strutture di controllo in C. Istruzioni di selezione: If, Switch; Istruzioni

2 iterative: while, do-while, for. 4

2% Funzioni.e procedure in C: definizione, chiamata, prototipo, passaggio dei 4
parametr1.

27 Ambito di visibilita delle variabili in C. Array come parametri. Strutture 4
come parametri. Esempi ed esercizi.

73 Effetti collaterali. Procedure e funzioni predefinite. Standard library. 5
Puntatori. File.

29 [Strutture dati: pila, coda, lista. Esempi ed esercizi. 12

30 [Installazione, configurazione e uso dell’ambiente di sviluppo. 4

Testi di riferimento

Testi da cui studiare: C How to Program, Ninth Edition, P. Deitel e H. Deitel

Gli studenti che lo desiderano possono ottenere il testo in prestito dalla Biblioteca. Puo
convenire verificarne la disponibilitd mediante il Sistema Bibliotecario di Ateneo

kttpsHopaemnibaiteasyrweblwdi8Andesxphp? e contattare la biblioteca per concordare

il prestito.

Note ai testi di

INel corso delle lezioni la docente utilizzera delle slide che sono disponibili sulla piattaformal
IADA del dipartimento (v. sopra 'sede virtuale'). Sulla piattaforma sono anche disponibili

riferimento . . .

alcune prove scritte di esami svolte.
Ore
Totali IDidattica frontale ILaboratorio ed esercitazioni Studio individuale
300 ore 72 ore 45 ore 183 ore
CFU/ETCS
12 CFU 9 CFU 3 CFU

https://deitel.com/c-how-to-program-9-e/#:~:text=C%20How%20to%20Program%2C%20Ninth,traditional%20or%20%E2%80%9Cflipped%E2%80%9D%20classrooms.
https://opac.uniba.it/easyweb/w8018/index.php?
https://opac.uniba.it/easyweb/w8018/index.php?

Conoscenza e capacita
di comprensione

e Acquisire la conoscenza degli aspetti teorici e pratici relativi alla progettazione delle
soluzioni di problemi (problem solving) mediante 1’uso del computer e la conoscenza
degli strumenti che si utilizzano per la programmazione.

e Acquisire conoscenze che consentano allo studente di comprendere come si pud
indicare ad un elaboratore elettronico (macchina automatica di impiego universale,
hardware) la soluzione di un problema o di una classe di problemi, che I'elaboratore
puo risolvere, con un metodo ed un linguaggio appropriato, creando un apposito
programma (software) eseguibile dall'elaboratore.

e Acquisire la capacita di ragionare ed individuare una soluzione ad un problema
(algoritmo) secondo il paradigma della programmazione imperativa strutturata.

Conoscenza e capacita di
comprensione applicate

e Comprendere l'uso di un linguaggio di progettazione non convenzionale (es.

e pseudocodice) e l'uso di una rappresentazione grafica (es. flow chart) per descrivere
con un formalismo semplice un algoritmo;

e Comprendere il lessico, la sintassi e la semantica del linguaggio di programmazione
G

e Acquisire la capacita di scrivere un programma strutturato in linguaggio C;

e Acquisire la capacita di individuare casi di test per il dominio cui fa riferimento il
programma creato;

e Acquisire la capacita di utilizzare un ambiente di sviluppo per trasformare il
programma sorgente (in C) in programma eseguibile ed eseguirlo.

Competenze trasversali

Modalita di verifica
dell’apprendimento

Autonomia di giudizio
* Acquisire la capacita di verificare che 'algoritmo individuato risponda alle specifiche
di un problema;
* Saper valutare e interpretare in maniera autonoma diverse strategie risolutive
analizzando gli algoritmi proposti e fornendo soluzioni alternative.
* Acquisire la capacita di verificare che i risultati ottenuti dopo l'esecuzione del
programma siano quelli attesi.
Abilita comunicative
* Imparare a commentare il codice prodotto al fine di renderlo comprensibile ¢
agevolmente modificabile da altri professionisti, con l'obiettivo di sviluppare in team.
Capacita di apprendere in modo autonomo
» Capacita di approfondire concetti attraverso lo studio autonomo di materiale didattico
bibliografico anche attraverso piattaforme di e-learning.
* Capacita di completare autonomamente il percorso formativo previsto dal testo di
riferimento, oltre i contenuti previsti dal programma dell'insegnamento.
» Capacita di riutilizzare le conoscenze acquisite sia in situazioni problematiche
nuove, sia in contesti nuovi di programmazione imperativa.

IL’esame si articola in due prove, entrambe obbligatorie e da svolgere nello stesso appello:

Prova di laboratorio

Durata: 60 minuti

Attivita: realizzazione di un programma in linguaggio C, suddiviso in 4 punti.
Valutazione: ogni punto svolto correttamente (cio¢ con output conforme alle
specifiche) assegna 3 punti, in caso contrario 0.

Punteggio massimo: 12 punti.

Prova scritta

e Durata: 60 minuti
e Attivita: risposta a 3 domande aperte.
e Valutazione: ciascuna domanda, se correttamente e completamente svolta, vale 6

e Punteggio massimo: 18 punti.
Regole generali

e Per il superamento dell’esame ¢ necessario sostenere entrambe le prove e ottenere

'Valutazione. 11 voto finale ¢ espresso in trentesimi (0—30), con possibilita di lode

punti.

un punteggio complessivo pari ad almeno 18/30.
In caso di punteggio insufficiente, sara necessario ripetere entrambe le prove.

Il voto finale corrisponde alla somma dei punteggi delle due prove, fino a un|
massimo di 30/30.

Criteri di valutazione

» Conoscenza e capacita di comprensione: Lo studente:

o dovra essere in grado di analizzare problemi formulando anche ipotesi
aggiuntive, individuando i dati necessari ¢ sufficienti per la soluzione ¢
fornendone la descrizione;

o dovra essere in grado di individuare una strategia di soluzione che prevede
la scomposizione del problema in sottoproblemi e di saper rappresentare sia
la scomposizione sia gli algoritmi con adeguati linguaggi di descrizione;

o dovra dimostrare di saper implementare la soluzione proposta utilizzando il
linguaggio imperativo di riferimento e di saperla testare su campioni di dati;

o dovra essere in grado di generalizzare soluzioni per una classe di problemi
con lo stile della programmazione strutturata.

Conoscenza e capacita di comprensione applicate: Lo studente:

o dovra essere in grado di individuare una strategia di soluzione che prevede
la scomposizione del problema in sottoproblemi e di saper rappresentare sia
la scomposizione sia gli algoritmi con adeguati linguaggi di descrizione;

o dovra dimostrare di saper implementare la soluzione proposta utilizzando il
linguaggio imperativo di riferimento e di saperla testare su campioni di dati,

* Autonomia di giudizio: Lo studente:
o dovra essere in grado di correggere e validare il corretto funzionamento dei
programmi sviluppati;
o dovra essere in grado di discutere le soluzioni proposte chiarendo le scelte
progettuali e implementative.

» Abilita comunicative: Lo studente:

o dovra essere in grado di rendere il codice scritto comprensibile ad altri,
mediante la sua descrizione generale e commenti specifici alle istruzioni e
alle strutture di controllo utilizzate;

o dovra dimostrare di aver acquisito piena conoscenza dei concetti presentati
a lezione nonché degli algoritmi fondamentali.

» Capacita di apprendere: Lo studente:
o dovra essere in grado di trasformare autonomamente algoritmi descritti con
flowchart in programmi in linguaggio C;
o dovra essere in grado di utilizzare le soluzioni alternative descritte nel testo
di riferimento, se non descritte nel corso delle lezioni, come ad esempio le
diverse modalita di dichiarazione delle variabili.

Criteri di misurazione
dell'apprendimento e di
attribuzione del voto finale

Voto Descrittori

<18 Conoscenze frammentarie e superficiali dei contenuti, errori nell’applicare i
insufficiente |concetti, descrizione carente.

18 -20 Conoscenze dei contenuti sufficienti ma generali, descrizione semplice,
incertezze nell’applicazione di concetti teorici.

21-23 Conoscenze dei contenuti appropriate ma non approfondite, capacita di applicare
i concetti teorici, capacita di presentare i contenuti in modo semplice.

24 -25 Conoscenze dei contenuti appropriate ed ampie, discreta capacita di applicazione
delle conoscenze, capacita di presentare i contenuti in modo articolato.

26 -27 Conoscenze dei contenuti precise e complete, buona capacita di applicare le
conoscenze, capacita di analisi, descrizione chiara e corretta.

28-29 Conoscenze dei contenuti ampie, complete ed approfondite, buona applicazione
dei contenuti, buona capacita di analisi e di sintesi, descrizione sicura e corretta.

30 Conoscenze dei contenuti molto ampie, complete ed approfondite, capacita ben
30 elode |consolidata di applicare i contenuti, ottima capacita di analisi, di sintesi e di
collegamenti interdisciplinari, padronanza di descrizione.

Si suggerisce agli studenti di affidarsi esclusivamente alle informazioni/comunicazioni
fornite sui siti ufficiali del Dipartimento di Informatica, ovvero sui gruppi social solo se
costituiti e amministrati esclusivamente dai docenti dei relativi insegnamenti:

e https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-
dilaurea/corsi-di-laurea

e https://www.uniba.it/it/ricerca/dipartimenti/informatica

e https://elearning.di.uniba.it/

I programmi degli insegnamenti sono disponibili qui:
e https://programmi.di.uniba.it/

Le informazioni che tutti gli studenti dovrebbero conoscere sono scritte nei Regolamenti
didattici e manifesti degli studi disponibili nel sito:
e https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-
dilaurea/corsi-di-laurea

Si suggerisce agli studenti di diffidare delle informazioni e dei materiali circolanti su siti

0 gruppi social non ufficiali, poiché spesso sono risultati non affidabili, non corretti 0|

incompleti. Per ogni dubbio, chiedere un incontro al docente secondo le modalita previste
er il ricevimento.

Link al corso sulla piattaforma e-learning del dipartimento ADA:
e https://elearning.di.uniba.it/

https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/corsi-di-laurea
https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/corsi-di-laurea
https://www.uniba.it/it/ricerca/dipartimenti/informatica
https://elearning.di.uniba.it/
https://programmi.di.uniba.it/
https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/corsi-di-laurea
https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/corsi-di-laurea
https://elearning.di.uniba.it/

Main information on the course

Course name Programmazione
Degree Informatica
Academic year 2025/26

12CFU,9T1+3 T2

(each CFU corresponds to 25 hours (h) of student’s time);
. . CFU are of type T1, T2 or T3

European Credit Transfer and Accumulation System
(ECTS), in Italian Crediti Formativi Universitari (CFU) | T1 =8 h lecture + 17 h individual study
T2 =15 h practice + 10 h individual study

T3 =25 h individual study

Settore Scientifico Disciplinare

Course language Italian
Course year First
Course period First Semester - exact dates can be found in the didactic regulations

Course attendance requirement | None, but it is highly recommended to attend classes

Website of the Degree https://www.uniba.it/it/corsi/informatica/corso-di-laurea-in-informatica/
Name and Surname Pasquale Ardimento

email pasquale.ardimento@uniba.it

phone

office Department of Informatics, Via Orabona 4, 70125, Bari. Room n.569, V floor.
e-learning platform ADA platform - https://elearning.di.uniba.it/

Teacher’s homepage https://www.uniba.it/it/docenti/ardimento-pasquale

Office hours Wednesday 2.30pm — 3.30pm, or on another day by appointment by email

The course aims to introduce the methodology of problem-solving and the basic
elements of structured imperative programming to formulate algorithmic solutions
to problems of varying complexity. In particular, the student will acquire the ability

Course goals

https://www.uniba.it/it/corsi/informatica/corso-di-laurea-in-informatica/

to apply problem-solving techniques, identify algorithmic solution strategies, and
use the C programming language to implement them.

Prerequisites/requirements

No prerequisites are required, as this is a course taught in the first semester of the
first year.

Course program

Mod Topics (estimated hours) Hours

1 Course presentation, contents, exam modalities, attendance, 2
schedule, in-class exercises, etc.
Introduction to Programming: from problem to program

2 The algorithm as an abstraction. Properties of the algorithm 2

3 Problem Solving and the analysis phase 5
Problem analysis. Problem formulation and its specifications.
Problem data. Expected results. Errors and edge cases.

Ambiguities, value limits and data validation. Examples and
exercises.

4 Problem Solving and the design phase 10
Breaking down the problem into subproblems. Techniques: top-
down, bottom-up, hybrid.
Building the solution method. Algorithm representation through
representation languages: structured flowcharts, linear notation,
decomposition tree, Nassi—Shneiderman diagrams. The Bohm—
Jacopini theorem: statement.
Examples and exercises.

5 Simple problems and complex problems. Sequential, selective, 4
iterative, and recursive decomposition.
Examples and exercises.

6 The program. Variables. Types of instructions. Declarative 4
instructions. Input-output instructions. Assignment statement.
Arithmetic expressions. Logical expressions. Constants. Control
structures. Examples and exercises.

7 Elementary algorithms: counting, summation and average of a 4
set of numbers, factorial, conversion from characters to numbers
in base 10, prime number, greatest common divisor, Fibonacci
series, swapping.

8 Data types. Type declaration. Taxonomy of data types. Standard 4
types. Simple user-defined types: enumerated, subrange.

9 Data types. Structured types. Structured data and Array type. 6
Data structure and Record type. Internal representation of arrays
and records.
Array indices.
Examples and exercises.

10 Exercise and preparation for the self-assessment test: problem 2
analysis, decomposition into subproblems, algorithmic design of
the solution. Cooperative participatory activity with teacher
assistance.

11

12

13

14

15

16

17

18

19

20

21

22

23

Self-assessment exercise: solving a problem according to the
problem-solving phases, excluding coding.

Self-correction of the self-assessment test with teacher
assistance.

Modular programming. Subprograms. Usefulness of
subprograms. Subprogram as functional abstraction. Resulting
structure of a program. Subprogram calls. Nesting.

Examples.

Communication between subprograms and the external/calling
environment. Subprogram scope. Shadowing effect. Global, local,
and non-local variables. Visibility rules. Variable scope and
lifetime.

Examples and exercises.

Subprograms. Static allocation and dynamic allocation. Side
effects. The contour model.
Examples.

Subprograms. Actual and formal parameters. Parameter passing
methods: by value, by reference, and by name.

Evaluation and comparison of passing methods.

Examples and exercises.

Subprograms. Procedures. Procedure headers and calls.
Examples and exercises.

Subprograms. Functions. Function headers and calls. Procedures
vs functions.
Examples and exercises.

Subprograms. Subprograms as parameters. Subprogram
activation. Activation records and the stack. Static and dynamic
chaining. Execution management.

Examples and exercises.

Recursion. Recursive functions. Execution management with
recursive functions.
Examples and exercises.

Fundamental algorithms: Algorithms on arrays: histogram
printing with arrays, removing duplicates from sorted arrays.
Algorithms on matrices. Linear search. Binary search. Array
merging.

Examples and exercises.

Sorting algorithms: selection sort, exchange sort, insertion sort.
Recursive algorithms: Factorial.

Structure of C programs. Data types: predefined simple types —
int, float, double, and char —, explicit enumeration of values. Type
definition.

24 Structured types in C: 4
array constructor, struct constructor, pointer constructor. Type
compatibility.

25 Control structures in C. Selection statements: If, Switch; Iterative 4
statements: while, do-while, for.

26 Functions and procedures in C: definition, call, prototype, 4
parameter passing.

27 Variable scope in C. Arrays as parameters. Structures as 4
parameters.
Examples and exercises.

28 Side effects. Predefined procedures and functions. Standard 5
library. Pointers. Files.

29 Data structures: stack, queue, list. 12
Examples and exercises.

30 Installation, configuration, and use of the development 4
environment.

Books for studying: C How to Program, Ninth Edition, P. Deitel e H. Deitel

Students who wish can borrow the books from the Library. It may be useful to check
availability through the University Library System at
https://opac.uniba.it/easyweb/w8018/index.php and contact the library to arrange the
loan.

Books of reference

During the lessons the teacher will use slides that retrace the contents of the book,
therefore, they will not be provided. The reference text contains all the topics of the
course, therefore, it is advisable to study from the text and to carry out independently
Notes to the books and constantly all the exercises included at the end of each chapter covered in class.

On the department's e-learning platform (see above 'virtual office’) are available:

e supporting video material used in class;
e some traces of written tests of exams, with examples of traces carried out;

Organization of the

didactic activities

Hours
Total Lectures Practice sessions | Project work | Individual study
300 hours 72 hours 45 hours 00 hours 183 hours
CFU/ETCS

12 CFU 09 CFU 03 CFU 00 CFU

Teaching methods

https://deitel.com/c-how-to-program-9-e/#:~:text=C%20How%20to%20Program%2C%20Ninth,traditional%20or%20%E2%80%9Cflipped%E2%80%9D%20classrooms.
https://opac.uniba.it/easyweb/w8018/index.php

Lectures, exercises and autonomous and group activities in the classroom and at
home (as detailed in the program). Non-attending students can work individually by
making arrangements with the teacher.

Expected learning

outcomes

Knowledge and
understanding

Acquire knowledge of the theoretical and practical aspects related to
designing problem-solving solutions using a computer, as well as an
understanding of the tools used for programming.

Gain an understanding of how to instruct a computer (a universal automatic
machine, hardware) to solve a problem or a class of problems that it can
handle, using an appropriate method and language, by creating a specific
program (software) executable by the computer.

Develop the ability to reason and identify a solution to a problem
(algorithm) according to the structured imperative programming paradigm.
Develop the ability to reason and identify a solution to a problem
(algorithm) according to the Object-Oriented programming paradigm

Applying knowledge and
understanding

Understand the use of a non-conventional design language (e.g.,
pseudocode) and the use of a graphical representation (e.g., flowchart) to
describe an algorithm with simple formalism.

Understand the lexicon, syntax, and semantics of the C programming
language.

Develop the ability to write a structured program in C.

Acquire the ability to identify test cases for the domain to which the created
program applies.

Gain the ability to use a development environment to transform the source
program (in C) into an executable program and run it.

Other sKkills

Making judgements

Develop the ability to verify that the identified algorithm meets the problem
specifications.

Be able to evaluate and interpret different solution strategies independently
by analyzing proposed algorithms and providing alternative solutions.
Acquire the ability to check that the results obtained after executing the
program are as expected.

Communication

Learn to comment on the produced code to make it understandable and
easily modifiable by other professionals, with the aim of developing in a
team.

Learning skills

Ability to deepen concepts through independent study of bibliographic
educational material, including e-learning platforms.

Ability to independently complete the educational path outlined by the
reference text, beyond the content covered by the course syllabus.

Ability to reuse acquired knowledge in both new problem situations and
new contexts of imperative programming.

Assessment

Assessment methods

The exam consists of two tests, both mandatory and to be taken in the same session:

Laboratory Test

Duration: 60 minutes
Activity: development of a C program, divided into 4 tasks.

Evaluation: each correctly completed task (i.e., producing output consistent
with the specifications) is worth 3 points; otherwise, 0 points.

Maximum score: 12 points.

Weritten Test

Duration: 60 minutes
Activity: answer 3 open-ended questions.

Evaluation: each question, if correctly and fully answered, is worth 6
points.

Maximum score: 18 points.

General Rules

To pass the exam, both tests must be taken and a total score of at least 18/30
must be achieved.

In case of an insufficient score, both tests must be retaken.

The final grade corresponds to the sum of the scores of the two tests, up to
a maximum of 30/30.

Grading: The final grade is expressed on a 30-point scale (0-30), with the possibility

of cum laude.

Evaluation criteria

* Knowledge and understanding:

The student must be able to analyze problems, even formulating additional
hypotheses, identifying the necessary and sufficient data for the solution,
and providing a description.

They must be able to identify a solution strategy that involves breaking
down the problem into sub-problems and representing both the breakdown
and the algorithms with appropriate descriptive languages.

They must demonstrate the ability to implement the proposed solution using
the reference imperative language and test it on data samples.

They must be able to generalize solutions for a class of problems using
structured programming.

* Applied knowledge and understanding:

They must be able to identify a solution strategy that involves breaking
down the problem into sub-problems and representing both the breakdown
and the algorithms with appropriate descriptive languages.

They must demonstrate the ability to implement the proposed solution using
the reference imperative language and test it on data samples.

* Autonomy of judgment:

- The student must be able to correct and validate the correct functioning of
the developed programs.
- They must be able to discuss the proposed solutions, explaining the design
and implementation choices.
» Communication skills:

- The student must be able to make the written code understandable to others
by providing a general description and specific comments on the
instructions and control structures used.

- They must demonstrate full knowledge of the concepts presented in the
lessons as well as the fundamental algorithms.

* Learning skills:

- The student must be able to independently transform algorithms described
with flowcharts into C programs.

- The student must be able to use alternative solutions described in the
reference text, even if not covered during lessons, such as the different
methods of declaring variables.

Measurements and final grade

Further information

« <18
o Insufficient: Fragmented and superficial knowledge of the
content, errors in applying concepts, inadequate description.
« 18-20
o Sufficient: General knowledge of the content, simple description,
uncertainty in applying theoretical concepts.
e 21-23
o Adequate: Appropriate but not in-depth knowledge of the content,
ability to apply theoretical concepts, ability to present content in a
simple manner.
e 24-25
o Good: Appropriate and broad knowledge of the content,
reasonable ability to apply knowledge, ability to present content
in a structured manner.
e 26-27
o Very Good: Precise and complete knowledge of the content, good
ability to apply knowledge, analytical skills, clear and correct
description.
e 28-29
o Excellent: Broad, complete, and in-depth knowledge of the
content, good application of concepts, strong analytical and
synthesis skills, confident and correct description.
* 30 - 30 with honors
o Outstanding: Very broad, complete, and in-depth knowledge of
the content, well-established ability to apply concepts, excellent
analytical, synthesis, and interdisciplinary connection skills,
mastery in description.

It is recommended that students rely exclusively on the information and
communications provided on the official websites of the Department of Computer
Science or on social groups only if they are created and managed solely by the
instructors of the respective courses:

e https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-
dilaurea/corsi-di-laurea

* https://www.uniba.it/it/ricerca/dipartimenti/informatica

* https://elearning.di.uniba.it/

Course syllabi are available here:

e https://programmi.di.uniba.it/

https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/corsi-di-laurea
https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/corsi-di-laurea
https://programmi.di.uniba.it/

Information that all students should be aware of is written in the Academic
Regulations and study guides available on the website:

e https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-
dilaurea/corsi-di-laurea

Students are advised to be cautious of information and materials circulating on
unofficial websites or social groups, as they are often unreliable, incorrect, or
incomplete. For any doubts, please request a meeting with the instructor according
to the office hours procedures.

Link to the course on the department's ADA e-learning platform:

e https://elearning.di.uniba.it/

https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/corsi-di-laurea
https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/corsi-di-laurea
https://elearning.di.uniba.it/

