

Principali informazioni sull’insegnamento

Denominazione
dell’insegnamento Programmazione

Corso di studio Informatica

Anno Accademico 2025/26
Crediti formativi universitari (CFU) / European Credit
Transfer and Accumulation System (ECTS) 12 CFU
Settore Scientifico
Disciplinare INF/01
Lingua di erogazione Italiano
Anno di corso Primo
Periodo di erogazione 1^ semestre, le date esatte sono riportate nel manifesto/regolamento
Obbligo di frequenza La frequenza è fortemente raccomandata
Sito web del corso di
studio

https://www.uniba.it/it/corsi/informatica/corso-di-laurea-in-informatica/

Docente/i
Nome e cognome Pasquale Ardimento
Indirizzo mail pasquale.ardimento@uniba.it
Telefono
Sede Dipartimento di Informatica, Via Orabona 4, 70125, Bari. Stanza n.569, V piano.
Sede virtuale Piattaforma ADA - https://elearning.di.uniba.it/
Sito web del docente https://www.uniba.it/it/docenti/ardimento-pasquale/
Ricevimento Martedì 14:30 – 15:30, o in altro giorno previo appuntamento per e-mail
Syllabus

Obiettivi formativi

Il corso si propone di introdurre la metodologia del problem solving e gli elementi base della
programmazione imperativa strutturata per formulare soluzioni algoritmiche a problemi di
varia complessità. In particolare, lo studente acquisirà la capacità di applicare le tecniche del
problem solving, di individuare strategie di soluzione di natura algoritmica e di usare il
linguaggio di programmazione C per implementarle.

Prerequisiti
Non è richiesto alcun prerequisito in quanto trattasi di un insegnamento del primo semestre
del primo anno.

Contenuti di
insegnamento
(Programma)

 Mod Argomenti (l’indicazione oraria si intende stimata) Ore

1
Presentazione del corso, contenuti, modalità̀ d'esame, frequenza alle
lezioni, orari, modalità̀ di esercitazione in aula, ecc.
Introduzione alla Programmazione: dal problema al programma

2

2
L’algoritmo come astrazione. Le proprietà dell’algoritmo

2

3

Il Problem Solving e la fase di analisi
L’analisi del problema. La formulazione del problema e le sue
specifiche. I dati del problema. I risultati attesi. Gli errori e i casi
limite. Ambiguità, limiti dei valori e controlli dei dati. Esempi ed
esercizi.

5

https://www.uniba.it/it/corsi/informatica/corso-di-laurea-in-informatica/
https://elearning.di.uniba.it/
https://www.uniba.it/it/docenti/ardimento-pasquale/

4

Il Problem Solving e la fase di progettazione
La scomposizione del problema in sottoproblemi. Le tecniche: topdown,
bottom-up, ibrida.
La costruzione del metodo solutivo. La rappresentazione dell’algoritmo
mediante linguaggi di rappresentazione: i diagrammi di flusso strutturati,
il linguaggio lineare, l’albero di decomposizione, i

10

 diagrammi di Nassi-Schneidermann. Il teorema di Bohm-Jacopini:

enunciato.
Esempi ed esercizi.

5
Problemi semplici e problemi complessi. Scomposizione sequenziale,
selettiva, iterativa e ricorsiva.
 Esempi ed esercizi.

4

6

Il programma. Le variabili. Tipi di istruzione. Istruzioni dichiarative.
Istruzioni di ingresso-uscita. Istruzione di assegnazione. Espressioni
aritmetiche. Espressioni logiche. Costanti. Strutture di controllo. Esempi
ed esercizi.

4

7
Algoritmi elementari: conteggio, sommatoria e media di un insieme di
numeri, fattoriale, conversione da caratteri a numeri in base 10, numero
primo, massimo comun divisore, serie di Fibonacci, scambio.

4

8 Tipi di dati. La dichiarazione di tipo. Tassonomia dei tipi di dato. Tipi
standard. Tipi semplici definiti dall’utente: enumerativo, subrange. 4

9

Tipi di dati. Tipi strutturati. Dato strutturato e tipo Array. Struttura di dati
e tipo Record. Rappresentazione interna degli array e dei record.
Gli indici degli array.
Esempi ed esercizi.

6

10

Esercitazione e preparazione alla prova di autovalutazione: analisi di
problemi, scomposizione in sottoproblemi, progettazione algoritmica
della soluzione. Attività partecipativa cooperativa svolta con l’assistenza
del docente

2

11 Esercitazione per autovalutazione: risoluzione di un problema secondo le
fasi del problem solving escluso la codifica.

3

12 Auto correzione prova di autovalutazione assistita dal docente 1

13

La programmazione modulare. I sottoprogrammi. Utilità dei
sottoprogrammi. Sottoprogramma come astrazione funzionale. Struttura
risultante di un programma. La chiamata dei sottoprogrammi.
Nidificazione.
Esempi.

6

14

La comunicazione dei sottoprogrammi con l’ambiente esterno e
l’ambiente chiamante. La vista di un sottoprogramma. L’effetto
shadowing. Variabili globali, locali e non locali. Le regole di visibilità.
L’ambito e la durata delle variabili.
Esempi ed esercizi.

2

15
I sottoprogrammi. Allocazione statica e allocazione dinamica. Il side
effect. Il contour model.
Esempi.

2

16

Sottoprogrammi. I parametri effettivi e i parametri formali. Modalità di
passaggio dei parametri: per valore, per referenza e per nome.
Valutazione e confronto tra le modalità di passaggio.
Esempi ed esercizi.

3

17
Sottoprogrammi. Le procedure. Intestazione e chiamata delle procedure.
Esempi ed esercizi. 2

18
Sottoprogrammi. Le funzioni. Intestazione e chiamata delle funzioni.
Procedure vs funzioni.
Esempi ed esercizi.

3

19

Sottoprogrammi. Sottoprogrammi come parametri. Attivazione dei
sottoprogrammi. I record di attivazione e lo stack. La concatenazione
statica e la concatenazione dinamica. La gestione dell’esecuzione. Esempi
ed esercizi.

3

20
La ricorsione. Funzioni ricorsive. Gestione dell’esecuzione con le
funzioni ricorsive.
Esempi ed esercizi.

4

21
Algoritmi fondamentali: Algoritmi su array: stampa istogrammi mediante
array, elimina duplicati su array ordinati. Algoritmi su matrici. Ricerca
lineare. Ricerca binaria. Fusione di array. Esempi ed esercizi

3

22
Algoritmi di ordinamento: sort per selezione, per scambio, per inserzione.
Algoritmi ricorsivi: Fattoriale. 8

23
Struttura dei programmi C. Tipi di dati: semplici predefiniti –int, float,
double e char-, enumerazione esplicita dei valori. Definizione di tipo. 3

24
Tipi strutturati in C:
il costruttore array, il costruttore struct ed il costruttore puntatore.
Compatibilità dei tipi.

4

25 Strutture di controllo in C. Istruzioni di selezione: If, Switch; Istruzioni
iterative: while, do-while, for. 4

26 Funzioni e procedure in C: definizione, chiamata, prototipo, passaggio dei
parametri. 4

27 Ambito di visibilità delle variabili in C. Array come parametri. Strutture
come parametri. Esempi ed esercizi. 4

28 Effetti collaterali. Procedure e funzioni predefinite. Standard library.
Puntatori. File. 5

29 Strutture dati: pila, coda, lista. Esempi ed esercizi. 12
 30 Installazione, configurazione e uso dell’ambiente di sviluppo. 4

Testi di riferimento

 Testi da cui studiare: C How to Program, Ninth Edition, P. Deitel e H. Deitel

Gli studenti che lo desiderano possono ottenere il testo in prestito dalla Biblioteca. Può
convenire verificarne la disponibilità mediante il Sistema Bibliotecario di Ateneo
https://opac.uniba.it/easyweb/w8018/index.php? e contattare la biblioteca per concordare
il prestito.

Note ai testi di
riferimento

Nel corso delle lezioni la docente utilizzerà delle slide che sono disponibili sulla piattaforma
ADA del dipartimento (v. sopra 'sede virtuale'). Sulla piattaforma sono anche disponibili
alcune prove scritte di esami svolte.

Organizzazione
della didattica

Ore
Totali Didattica frontale Laboratorio ed esercitazioni Studio individuale
300 ore 72 ore 45 ore 183 ore
CFU/ETCS
12 CFU 9 CFU 3 CFU

Metodi didattici

 Lezioni frontali, esercitazioni ed attività autonome e di gruppo in aula e a casa (come
dettagliato nel programma). Gli studenti non frequentanti possono lavorare singolarmente
prendendo accordi con il docente.

https://deitel.com/c-how-to-program-9-e/#:~:text=C%20How%20to%20Program%2C%20Ninth,traditional%20or%20%E2%80%9Cflipped%E2%80%9D%20classrooms.
https://opac.uniba.it/easyweb/w8018/index.php?
https://opac.uniba.it/easyweb/w8018/index.php?

Risultati di
apprendimento
previsti

Conoscenza e capacità
di comprensione

• Acquisire la conoscenza degli aspetti teorici e pratici relativi alla progettazione delle
soluzioni di problemi (problem solving) mediante l’uso del computer e la conoscenza
degli strumenti che si utilizzano per la programmazione.

• Acquisire conoscenze che consentano allo studente di comprendere come si può
indicare ad un elaboratore elettronico (macchina automatica di impiego universale,
hardware) la soluzione di un problema o di una classe di problemi, che l'elaboratore
può risolvere, con un metodo ed un linguaggio appropriato, creando un apposito
programma (software) eseguibile dall'elaboratore.

• Acquisire la capacità di ragionare ed individuare una soluzione ad un problema
(algoritmo) secondo il paradigma della programmazione imperativa strutturata.

Conoscenza e capacità di
comprensione applicate

• Comprendere l'uso di un linguaggio di progettazione non convenzionale (es.
• pseudocodice) e l'uso di una rappresentazione grafica (es. flow chart) per descrivere

con un formalismo semplice un algoritmo;
• Comprendere il lessico, la sintassi e la semantica del linguaggio di programmazione

C;
• Acquisire la capacità di scrivere un programma strutturato in linguaggio C;
• Acquisire la capacità di individuare casi di test per il dominio cui fa riferimento il

programma creato;
• Acquisire la capacità di utilizzare un ambiente di sviluppo per trasformare il

programma sorgente (in C) in programma eseguibile ed eseguirlo.

Competenze trasversali

Autonomia di giudizio
• Acquisire la capacità di verificare che l'algoritmo individuato risponda alle specifiche

di un problema;
• Saper valutare e interpretare in maniera autonoma diverse strategie risolutive

analizzando gli algoritmi proposti e fornendo soluzioni alternative.
• Acquisire la capacità di verificare che i risultati ottenuti dopo l'esecuzione del

programma siano quelli attesi.
Abilità comunicative

• Imparare a commentare il codice prodotto al fine di renderlo comprensibile e
agevolmente modificabile da altri professionisti, con l'obiettivo di sviluppare in team.

Capacità di apprendere in modo autonomo
• Capacità di approfondire concetti attraverso lo studio autonomo di materiale didattico

bibliografico anche attraverso piattaforme di e-learning.
• Capacità di completare autonomamente il percorso formativo previsto dal testo di

riferimento, oltre i contenuti previsti dal programma dell'insegnamento.
• Capacità di riutilizzare le conoscenze acquisite sia in situazioni problematiche

nuove, sia in contesti nuovi di programmazione imperativa.
Valutazione

Modalità di verifica
dell’apprendimento

L’esame si articola in due prove, entrambe obbligatorie e da svolgere nello stesso appello:

Prova di laboratorio
• Durata: 60 minuti
• Attività: realizzazione di un programma in linguaggio C, suddiviso in 4 punti.
• Valutazione: ogni punto svolto correttamente (cioè con output conforme alle

specifiche) assegna 3 punti, in caso contrario 0.
• Punteggio massimo: 12 punti.

Prova scritta

• Durata: 60 minuti
• Attività: risposta a 3 domande aperte.
• Valutazione: ciascuna domanda, se correttamente e completamente svolta, vale 6

punti.
• Punteggio massimo: 18 punti.

Regole generali

• Per il superamento dell’esame è necessario sostenere entrambe le prove e ottenere
un punteggio complessivo pari ad almeno 18/30.

• In caso di punteggio insufficiente, sarà necessario ripetere entrambe le prove.
• Il voto finale corrisponde alla somma dei punteggi delle due prove, fino a un

massimo di 30/30.

Valutazione. Il voto finale è espresso in trentesimi (0–30), con possibilità di lode

 Criteri di valutazione

• Conoscenza e capacità di comprensione: Lo studente:

o dovrà essere in grado di analizzare problemi formulando anche ipotesi
aggiuntive, individuando i dati necessari e sufficienti per la soluzione e
fornendone la descrizione;

o dovrà essere in grado di individuare una strategia di soluzione che prevede
la scomposizione del problema in sottoproblemi e di saper rappresentare sia
la scomposizione sia gli algoritmi con adeguati linguaggi di descrizione;

o dovrà dimostrare di saper implementare la soluzione proposta utilizzando il
linguaggio imperativo di riferimento e di saperla testare su campioni di dati;

o dovrà essere in grado di generalizzare soluzioni per una classe di problemi
con lo stile della programmazione strutturata.

Conoscenza e capacità di comprensione applicate: Lo studente:

o dovrà essere in grado di individuare una strategia di soluzione che prevede
la scomposizione del problema in sottoproblemi e di saper rappresentare sia
la scomposizione sia gli algoritmi con adeguati linguaggi di descrizione;

o dovrà dimostrare di saper implementare la soluzione proposta utilizzando il
linguaggio imperativo di riferimento e di saperla testare su campioni di dati.

• Autonomia di giudizio: Lo studente:
o dovrà essere in grado di correggere e validare il corretto funzionamento dei

programmi sviluppati;
o dovrà essere in grado di discutere le soluzioni proposte chiarendo le scelte

progettuali e implementative.

• Abilità comunicative: Lo studente:
o dovrà essere in grado di rendere il codice scritto comprensibile ad altri,

mediante la sua descrizione generale e commenti specifici alle istruzioni e
alle strutture di controllo utilizzate;

o dovrà dimostrare di aver acquisito piena conoscenza dei concetti presentati
a lezione nonché degli algoritmi fondamentali.

• Capacità di apprendere: Lo studente:

o dovrà essere in grado di trasformare autonomamente algoritmi descritti con
flowchart in programmi in linguaggio C;

o dovrà essere in grado di utilizzare le soluzioni alternative descritte nel testo
di riferimento, se non descritte nel corso delle lezioni, come ad esempio le
diverse modalità di dichiarazione delle variabili.

Criteri di misurazione
dell'apprendimento e di
attribuzione del voto finale

Voto Descrittori

 < 18

insufficiente
Conoscenze frammentarie e superficiali dei contenuti, errori nell’applicare i
concetti, descrizione carente.

18 - 20 Conoscenze dei contenuti sufficienti ma generali, descrizione semplice,
incertezze nell’applicazione di concetti teorici.

21 - 23 Conoscenze dei contenuti appropriate ma non approfondite, capacità di applicare
i concetti teorici, capacità di presentare i contenuti in modo semplice.

24 - 25 Conoscenze dei contenuti appropriate ed ampie, discreta capacità di applicazione
delle conoscenze, capacità di presentare i contenuti in modo articolato.

26 - 27 Conoscenze dei contenuti precise e complete, buona capacità di applicare le
conoscenze, capacità di analisi, descrizione chiara e corretta.

28 - 29 Conoscenze dei contenuti ampie, complete ed approfondite, buona applicazione
dei contenuti, buona capacità di analisi e di sintesi, descrizione sicura e corretta.

30
30 e lode

Conoscenze dei contenuti molto ampie, complete ed approfondite, capacità ben
consolidata di applicare i contenuti, ottima capacità di analisi, di sintesi e di
collegamenti interdisciplinari, padronanza di descrizione.

Altro

 Si suggerisce agli studenti di affidarsi esclusivamente alle informazioni/comunicazioni
fornite sui siti ufficiali del Dipartimento di Informatica, ovvero sui gruppi social solo se
costituiti e amministrati esclusivamente dai docenti dei relativi insegnamenti:

• https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-
dilaurea/corsi-di-laurea

• https://www.uniba.it/it/ricerca/dipartimenti/informatica
• https://elearning.di.uniba.it/

I programmi degli insegnamenti sono disponibili qui:

• https://programmi.di.uniba.it/

Le informazioni che tutti gli studenti dovrebbero conoscere sono scritte nei Regolamenti
didattici e manifesti degli studi disponibili nel sito:

• https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-
dilaurea/corsi-di-laurea

Si suggerisce agli studenti di diffidare delle informazioni e dei materiali circolanti su siti
o gruppi social non ufficiali, poiché spesso sono risultati non affidabili, non corretti o
incompleti. Per ogni dubbio, chiedere un incontro al docente secondo le modalità previste
per il ricevimento.

Link al corso sulla piattaforma e-learning del dipartimento ADA:

• https://elearning.di.uniba.it/

https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/corsi-di-laurea
https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/corsi-di-laurea
https://www.uniba.it/it/ricerca/dipartimenti/informatica
https://elearning.di.uniba.it/
https://programmi.di.uniba.it/
https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/corsi-di-laurea
https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/corsi-di-laurea
https://elearning.di.uniba.it/

Main information on the course

Course name Programmazione

Degree Informatica

Academic year 2025/26

European Credit Transfer and Accumulation System
(ECTS), in Italian Crediti Formativi Universitari (CFU)

12 CFU, 9 T1 + 3 T2

(each CFU corresponds to 25 hours (h) of student’s time);
CFU are of type T1, T2 or T3

T1 = 8 h lecture + 17 h individual study

T2 = 15 h practice + 10 h individual study

T3 = 25 h individual study

Settore Scientifico Disciplinare

Course language Italian

Course year First

Course period First Semester - exact dates can be found in the didactic regulations

Course attendance requirement None, but it is highly recommended to attend classes

Website of the Degree https://www.uniba.it/it/corsi/informatica/corso-di-laurea-in-informatica/

Teacher(s)

Name and Surname Pasquale Ardimento

email pasquale.ardimento@uniba.it

phone

office Department of Informatics, Via Orabona 4, 70125, Bari. Room n.569, V floor.

e-learning platform ADA platform - https://elearning.di.uniba.it/

Teacher’s homepage https://www.uniba.it/it/docenti/ardimento-pasquale

Office hours Wednesday 2.30pm – 3.30pm, or on another day by appointment by email

Syllabus

Course goals The course aims to introduce the methodology of problem-solving and the basic
elements of structured imperative programming to formulate algorithmic solutions
to problems of varying complexity. In particular, the student will acquire the ability

https://www.uniba.it/it/corsi/informatica/corso-di-laurea-in-informatica/

to apply problem-solving techniques, identify algorithmic solution strategies, and
use the C programming language to implement them.

Prerequisites/requirements No prerequisites are required, as this is a course taught in the first semester of the
first year.

Course program

Mod Topics (es,mated hours) Hours

1 Course presenta,on, contents, exam modali,es, a;endance,
schedule, in-class exercises, etc.
Introduc,on to Programming: from problem to program

2

2 The algorithm as an abstrac,on. Proper,es of the algorithm 2

3 Problem Solving and the analysis phase
Problem analysis. Problem formula,on and its specifica,ons.
Problem data. Expected results. Errors and edge cases.
Ambigui,es, value limits and data valida,on. Examples and
exercises.

5

4 Problem Solving and the design phase
Breaking down the problem into subproblems. Techniques: top-
down, bo;om-up, hybrid.
Building the solu,on method. Algorithm representa,on through
representa,on languages: structured flowcharts, linear nota,on,
decomposi,on tree, Nassi–Shneiderman diagrams. The Böhm–
Jacopini theorem: statement.
Examples and exercises.

10

5 Simple problems and complex problems. Sequen,al, selec,ve,
itera,ve, and recursive decomposi,on.
Examples and exercises.

4

6 The program. Variables. Types of instruc,ons. Declara,ve
instruc,ons. Input-output instruc,ons. Assignment statement.
Arithme,c expressions. Logical expressions. Constants. Control
structures. Examples and exercises.

4

7 Elementary algorithms: coun,ng, summa,on and average of a
set of numbers, factorial, conversion from characters to numbers
in base 10, prime number, greatest common divisor, Fibonacci
series, swapping.

4

8 Data types. Type declara,on. Taxonomy of data types. Standard
types. Simple user-defined types: enumerated, subrange.

4

9 Data types. Structured types. Structured data and Array type.
Data structure and Record type. Internal representa,on of arrays
and records.
Array indices.
Examples and exercises.

6

10 Exercise and prepara,on for the self-assessment test: problem
analysis, decomposi,on into subproblems, algorithmic design of
the solu,on. Coopera,ve par,cipatory ac,vity with teacher
assistance.

2

11 Self-assessment exercise: solving a problem according to the
problem-solving phases, excluding coding.

3

12 Self-correc,on of the self-assessment test with teacher
assistance.

1

13 Modular programming. Subprograms. Usefulness of
subprograms. Subprogram as func,onal abstrac,on. Resul,ng
structure of a program. Subprogram calls. Nes,ng.
Examples.

6

14 Communica,on between subprograms and the external/calling
environment. Subprogram scope. Shadowing effect. Global, local,
and non-local variables. Visibility rules. Variable scope and
life,me.
Examples and exercises.

2

15 Subprograms. Sta,c alloca,on and dynamic alloca,on. Side
effects. The contour model.
Examples.

2

16 Subprograms. Actual and formal parameters. Parameter passing
methods: by value, by reference, and by name.
Evalua,on and comparison of passing methods.
Examples and exercises.

3

17 Subprograms. Procedures. Procedure headers and calls.
Examples and exercises.

2

18 Subprograms. Func,ons. Func,on headers and calls. Procedures
vs func,ons.
Examples and exercises.

3

19 Subprograms. Subprograms as parameters. Subprogram
ac,va,on. Ac,va,on records and the stack. Sta,c and dynamic
chaining. Execu,on management.
Examples and exercises.

3

20 Recursion. Recursive func,ons. Execu,on management with
recursive func,ons.
Examples and exercises.

4

21 Fundamental algorithms: Algorithms on arrays: histogram
prin,ng with arrays, removing duplicates from sorted arrays.
Algorithms on matrices. Linear search. Binary search. Array
merging.
Examples and exercises.

3

22 Sor,ng algorithms: selec,on sort, exchange sort, inser,on sort.
Recursive algorithms: Factorial.

8

23 Structure of C programs. Data types: predefined simple types –
int, float, double, and char –, explicit enumera,on of values. Type
defini,on.

3

24 Structured types in C:
array constructor, struct constructor, pointer constructor. Type
compa,bility.

4

25 Control structures in C. Selec,on statements: If, Switch; Itera,ve
statements: while, do-while, for.

4

26 Func,ons and procedures in C: defini,on, call, prototype,
parameter passing.

4

27 Variable scope in C. Arrays as parameters. Structures as
parameters.
Examples and exercises.

4

28 Side effects. Predefined procedures and func,ons. Standard
library. Pointers. Files.

5

29 Data structures: stack, queue, list.
Examples and exercises.

12

30 Installa,on, configura,on, and use of the development
environment.

4

Books of reference

Books for studying: C How to Program, Ninth Edition, P. Deitel e H. Deitel

Students who wish can borrow the books from the Library. It may be useful to check
availability through the University Library System at
https://opac.uniba.it/easyweb/w8018/index.php and contact the library to arrange the
loan.

Notes to the books

During the lessons the teacher will use slides that retrace the contents of the book,
therefore, they will not be provided. The reference text contains all the topics of the
course, therefore, it is advisable to study from the text and to carry out independently
and constantly all the exercises included at the end of each chapter covered in class.

On the department's e-learning platform (see above 'virtual office') are available:

• supporting video material used in class;
• some traces of written tests of exams, with examples of traces carried out;

Organization of the
didactic activities

Hours

Total Lectures Practice sessions Project work Individual study

300 hours 72 hours 45 hours 00 hours 183 hours

CFU/ETCS

 12 CFU 09 CFU 03 CFU 00 CFU

Teaching methods

https://deitel.com/c-how-to-program-9-e/#:~:text=C%20How%20to%20Program%2C%20Ninth,traditional%20or%20%E2%80%9Cflipped%E2%80%9D%20classrooms.
https://opac.uniba.it/easyweb/w8018/index.php

Lectures, exercises and autonomous and group activities in the classroom and at
home (as detailed in the program). Non-attending students can work individually by
making arrangements with the teacher.

Expected learning
outcomes

Knowledge and
understanding

• Acquire knowledge of the theoretical and practical aspects related to
designing problem-solving solutions using a computer, as well as an
understanding of the tools used for programming.

• Gain an understanding of how to instruct a computer (a universal automatic
machine, hardware) to solve a problem or a class of problems that it can
handle, using an appropriate method and language, by creating a specific
program (software) executable by the computer.

• Develop the ability to reason and identify a solution to a problem
(algorithm) according to the structured imperative programming paradigm.

• Develop the ability to reason and identify a solution to a problem
(algorithm) according to the Object-Oriented programming paradigm

Applying knowledge and
understanding

• Understand the use of a non-conventional design language (e.g.,
pseudocode) and the use of a graphical representation (e.g., flowchart) to
describe an algorithm with simple formalism.

• Understand the lexicon, syntax, and semantics of the C programming
language.

• Develop the ability to write a structured program in C.
• Acquire the ability to identify test cases for the domain to which the created

program applies.
• Gain the ability to use a development environment to transform the source

program (in C) into an executable program and run it.

Other skills

Making judgements

• Develop the ability to verify that the identified algorithm meets the problem
specifications.

• Be able to evaluate and interpret different solution strategies independently
by analyzing proposed algorithms and providing alternative solutions.

• Acquire the ability to check that the results obtained after executing the
program are as expected.

Communication

• Learn to comment on the produced code to make it understandable and
easily modifiable by other professionals, with the aim of developing in a
team.

Learning skills

• Ability to deepen concepts through independent study of bibliographic
educational material, including e-learning platforms.

• Ability to independently complete the educational path outlined by the
reference text, beyond the content covered by the course syllabus.

• Ability to reuse acquired knowledge in both new problem situations and
new contexts of imperative programming.

Assessment

Assessment methods

The exam consists of two tests, both mandatory and to be taken in the same session:

Laboratory Test

• Duration: 60 minutes

• Activity: development of a C program, divided into 4 tasks.

• Evaluation: each correctly completed task (i.e., producing output consistent
with the specifications) is worth 3 points; otherwise, 0 points.

• Maximum score: 12 points.

Written Test

• Duration: 60 minutes

• Activity: answer 3 open-ended questions.

• Evaluation: each question, if correctly and fully answered, is worth 6
points.

• Maximum score: 18 points.

General Rules

• To pass the exam, both tests must be taken and a total score of at least 18/30
must be achieved.

• In case of an insufficient score, both tests must be retaken.

• The final grade corresponds to the sum of the scores of the two tests, up to
a maximum of 30/30.

Grading: The final grade is expressed on a 30-point scale (0–30), with the possibility
of cum laude.

Evaluation criteria

• Knowledge and understanding:

- The student must be able to analyze problems, even formulating additional
hypotheses, identifying the necessary and sufficient data for the solution,
and providing a description.

- They must be able to identify a solution strategy that involves breaking
down the problem into sub-problems and representing both the breakdown
and the algorithms with appropriate descriptive languages.

- They must demonstrate the ability to implement the proposed solution using
the reference imperative language and test it on data samples.

- They must be able to generalize solutions for a class of problems using
structured programming.

• Applied knowledge and understanding:

- They must be able to identify a solution strategy that involves breaking
down the problem into sub-problems and representing both the breakdown
and the algorithms with appropriate descriptive languages.

- They must demonstrate the ability to implement the proposed solution using
the reference imperative language and test it on data samples.

• Autonomy of judgment:

- The student must be able to correct and validate the correct functioning of
the developed programs.

- They must be able to discuss the proposed solutions, explaining the design
and implementation choices.

• Communication skills:

- The student must be able to make the written code understandable to others
by providing a general description and specific comments on the
instructions and control structures used.

- They must demonstrate full knowledge of the concepts presented in the
lessons as well as the fundamental algorithms.

• Learning skills:

- The student must be able to independently transform algorithms described
with flowcharts into C programs.

- The student must be able to use alternative solutions described in the
reference text, even if not covered during lessons, such as the different
methods of declaring variables.

Measurements and final grade

• < 18
o Insufficient: Fragmented and superficial knowledge of the

content, errors in applying concepts, inadequate description.
• 18 - 20

o Sufficient: General knowledge of the content, simple description,
uncertainty in applying theoretical concepts.

• 21 - 23
o Adequate: Appropriate but not in-depth knowledge of the content,

ability to apply theoretical concepts, ability to present content in a
simple manner.

• 24 - 25
o Good: Appropriate and broad knowledge of the content,

reasonable ability to apply knowledge, ability to present content
in a structured manner.

• 26 - 27
o Very Good: Precise and complete knowledge of the content, good

ability to apply knowledge, analytical skills, clear and correct
description.

• 28 – 29
o Excellent: Broad, complete, and in-depth knowledge of the

content, good application of concepts, strong analytical and
synthesis skills, confident and correct description.

• 30 - 30 with honors
o Outstanding: Very broad, complete, and in-depth knowledge of

the content, well-established ability to apply concepts, excellent
analytical, synthesis, and interdisciplinary connection skills,
mastery in description.

Further information
It is recommended that students rely exclusively on the information and
communications provided on the official websites of the Department of Computer
Science or on social groups only if they are created and managed solely by the
instructors of the respective courses:

• https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-
dilaurea/corsi-di-laurea
• https://www.uniba.it/it/ricerca/dipartimenti/informatica
• https://elearning.di.uniba.it/

Course syllabi are available here:

• https://programmi.di.uniba.it/

https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/corsi-di-laurea
https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/corsi-di-laurea
https://programmi.di.uniba.it/

Information that all students should be aware of is written in the Academic
Regulations and study guides available on the website:

• https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-
dilaurea/corsi-di-laurea

Students are advised to be cautious of information and materials circulating on
unofficial websites or social groups, as they are often unreliable, incorrect, or
incomplete. For any doubts, please request a meeting with the instructor according
to the office hours procedures.

Link to the course on the department's ADA e-learning platform:

• https://elearning.di.uniba.it/

https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/corsi-di-laurea
https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/corsi-di-laurea
https://elearning.di.uniba.it/

