
 

 
 

Principali informazioni sull’insegnamento 

Denominazione 
dell’insegnamento  Programmazione (track E-M) 

Corso di studio Informatica 

Anno Accademico 2025/26  

Crediti formativi universitari (CFU) / European 
Credit Transfer and Accumulation System (ECTS)  12 CFU  

Settore Scientifico Disciplinare INF/01 

Lingua di erogazione Italiano 

Anno di corso Primo  

Periodo di erogazione 1^ semestre, le date esatte sono riportate nel manifesto/regolamento 

Obbligo di frequenza No, ma la frequenza è fortemente raccomandata 

Sito web del corso di studio https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-
laurea/corsi-di-laurea 

  

Docente/i  

Nome e cognome VERONICA ROSSANO 

Indirizzo mail veronica.rossano@uniba.it 

Telefono 080 544 2477 

Sede Dipartimento di Informatica, Via Orabona 4, 70125, Bari. Stanza n.772, 7^ piano. 

Sede virtuale Piattaforma e-learning UNIBA - https://elearning.uniba.it/course/view.php?id=2830  

Sito web del docente https://www.uniba.it/it/docenti/rossano-veronica  

Ricevimento (giorni, orari e 
modalità, es. su appuntamento) Tutti i giorni previo appuntamento via mail o su MsTeams.  

 
    

Syllabus  



 

Obiettivi formativi 

Il corso si propone di introdurre la metodologia del problem solving e gli elementi base 
della programmazione imperativa strutturata per formulare soluzioni algoritmiche a 
problemi di varia complessità. In particolare, lo studente acquisirà la capacità di 
applicare le tecniche del problem solving, di individuare strategie di soluzione di natura 
algoritmica e di usare il linguaggio di programmazione C per implementarle. 

Prerequisiti 

 
Per frequentare il Corso di Laurea in Informatica non si richiedono competenze 
informatiche di alcun tipo, ma è indispensabile avere una buona preparazione nelle 
materie di base della scuola media secondaria, in particolare si richiedono abilità 
matematiche, logiche e di ragionamento. 

Contenuti di insegnamento 
(Programma) 

Mod Argomenti Impegno 
orario 
stimato  

1 Presentazione del corso, contenuti, modalità̀ d'esame, esoneri, 
frequenza alle lezioni, orari, modalità̀ di esercitazione in aula, 
ecc. 
Introduzione alla Programmazione: dal problema al programma 

3 

2 L’algoritmo come astrazione. 
Le proprietà dell’algoritmo 

3 

3 Il Problem Solving e la fase di analisi 
L’analisi del problema. La formulazione del problema e le sue 
specifiche. I dati del problema. I risultati attesi. Gli errori e i 
casi 
limite. Ambiguità, limiti dei valori e controlli dei dati. 
Esempi ed esercizi. 

6 

4 Il Problem Solving e la fase di progettazione 
La scomposizione del problema in sottoproblemi. Le tecniche: 
top-down, bottom-up, ibrida. 
La costruzione del metodo solutivo. La rappresentazione 
dell’algoritmo mediante linguaggi di rappresentazione: i 
diagrammi di flusso strutturati, il linguaggio lineare, l’albero di 
decomposizione, i diagrammi di Nassi-Schneidermann. Il 
teorema di Bohm-Jacopini: enunciato. 
Esempi ed esercizi. 

15 

5 Problemi semplici e problemi complessi. Scomposizione 
sequenziale, selettiva, iterativa e ricorsiva. 
Esempi ed esercizi. 

3 

6 Il programma. Le variabili. Tipi di istruzione. Istruzioni 
dichiarative. 
Istruzioni di ingresso-uscita. Istruzione di assegnazione. 
Espressioni aritmetiche. Espressioni logiche. Costanti. Strutture 
di controllo. 
Esempi ed esercizi. 

3 

7 Algoritmi elementari: conteggio, sommatoria e media di un 
insieme di 
numeri, fattoriale, conversione da caratteri a numeri in base 10, 
numero primo, massimo comun divisore, serie di Fibonacci, 
scambio. 

3 

8 Tipi di dati. La dichiarazione di tipo. Tassonomia dei tipi di 
dato. Tipi 
standard. Tipi semplici definiti dall’utente: enumerativo, 
subrange. 

3 

9 Tipi di dati. Tipi strutturati. Dato strutturato e tipo Array. 
Struttura di dati e tipo Record. Rappresentazione interna degli 
array e dei record. Gli indici degli array. 
Esempi ed esercizi. 

7 

10 Esercitazione e preparazione alla prova di autovalutazione: 
analisi di problemi, scomposizione in sottoproblemi, 
progettazione algoritmica della soluzione. Attività partecipativa 
cooperativa svolta con l’assistenza del docente 

3 



 

11 Esercitazione per autovalutazione: risoluzione di un problema 
secondo 
le fasi del problem solving escluso la codifica. 

4 

12 Auto correzione prova di autovalutazione assistita dal docente 2 
13 La programmazione modulare. I sottoprogrammi. Utilità dei 

sottoprogrammi. Sottoprogramma come astrazione funzionale. 
Struttura risultante di un programma. La chiamata dei 
sottoprogrammi. Nidificazione. 
Esempi. 

8 

14 La comunicazione dei sottoprogrammi con l’ambiente esterno e 
l’ambiente chiamante. La vista di un sottoprogramma. L’effetto 
shadowing. Variabili globali, locali e non locali. Le regole di 
visibilità. L’ambito e la durata delle variabili. 
Esempi ed esercizi. 

3 

15 I sottoprogrammi. Allocazione statica e allocazione dinamica. Il 
side 
effect. Il contour model. 
Esempi. 

3 

16 Sottoprogrammi. I parametri effettivi e i parametri formali. 
Modalità di passaggio dei parametri: per valore, per referenza e 
per nome. 
Valutazione e confronto tra le modalità di passaggio. 
Esempi ed esercizi. 

4 

17 Sottoprogrammi. Le procedure. Intestazione e chiamata delle 
procedure. 
Esempi ed esercizi. 

3 

18 Sottoprogrammi. Le funzioni. Intestazione e chiamata delle 
funzioni. 
Procedure vs funzioni. 
Esempi ed esercizi. 

3 

19 Sottoprogrammi. Sottoprogrammi come parametri. Attivazione 
dei sottoprogrammi. I record di attivazione e lo stack. La 
concatenazione statica e la concatenazione dinamica. La 
gestione dell’esecuzione. 
Esempi ed esercizi. 
 

4 

20 La ricorsione. Funzioni ricorsive. Gestione dell’esecuzione con 
le funzioni ricorsive. 
Esempi ed esercizi. 

3 

21 Algoritmi fondamentali: Algoritmi su array: stampa istogrammi 
mediante array, elimina duplicati su array ordinati. Algoritmi su 
matrici. Ricerca lineare. Ricerca binaria. Fusione di array 

3 

22 Algoritmi di ordinamento: sort per selezione, per scambio, per 
inserzione. Algoritmi ricorsivi: Fattoriale. 

3 

23 Struttura dei programmi C. Tipi di dati: semplici predefiniti –
int, 
float, double e char-, enumerazione esplicita dei valori. 
Definizione di 
tipo. 

3 

24 Tipi strutturati in C: 
il costruttore array, il costruttore struct ed il costruttore 
puntatore. 
Compatibilità dei tipi. 

4 

25 Strutture di controllo in C. Istruzioni di selezione: If, Switch; 
Istruzioni iterative: while, do-while, for. 

3 

26 Funzioni e procedure in C: definizione, chiamata, prototipo, 
passaggio 
dei parametri. 

3 

27 Ambito di visibilità delle variabili in C. Array come parametri. 
Strutture come parametri. 

4 

28 Effetti collaterali. Procedure e funzioni predefinite. Standard 
library. 
Puntatori. File. 

5 

 



 

Testi di riferimento 

Testo da cui studiare: 
P. Deitel e H. Deitel 
Il linguaggio C – Fondamenti e tecniche di programmazione 
8^edizione - Pearson 2016 - ISBN: 9788891901651 
(vanno bene anche le edizioni successive e precedenti dalla 4^ in poi) 
 
Testo integrativo, facoltativo: 
W. B. Kernighan, D.M. Ritchie. Il linguaggio C. Principi di programmazione e 
manuale di riferimento.  
 
 
Gli studenti che lo desiderano possono ottenere i testi in prestito dalla Biblioteca. Può 
convenire verificarne la disponibilità mediante il Sistema Bibliotecario di Ateneo 
https://opac.uniba.it/easyweb/w8018/index.php? e contattare la biblioteca per 
concordare il prestito.  

Note ai testi di riferimento 

Nel corso delle lezioni il docente illustrerà i concetti con l’ausilio di slide che 
sintetizzano i contenuti del corso. Le slide saranno rese disponibili al termine di 
ogni lezione sulla piattaforma ADA del dipartimento (v. sopra 'sede virtuale'). 
Sulla piattaforma ADA sono disponibili, inoltre, tutte alcune simulazioni di esame 
già svolte.  

Organizzazione della 
didattica  

 

Ore 

Totali  Didattica frontale  Laboratorio/esercitazione Progetto Studio individuale 

300 ore 72 ore 45 ore  183 ore 

CFU/ETCS  

12 CFU 9 CFU 3 CFU   

  

Metodi didattici  

 

Il corso è organizzato in lezioni frontali svolte con l’ausilio di slide, in esercitazioni 
guidate svolte in aula e esercitazioni svolte autonomamente a casa.  

Le esercitazioni guidate saranno svolte in aula con l’approccio del Bring Your Own 
Device (BYOD).  

Le esercitazioni svolte in aula e a casa dovranno essere svolte singolarmente da 
ciascuno studente. Sarà richiesta la consegna delle stesse sulla piattaforma ADA 
seguendo le indicazioni e le scadenze comunicate durante le lezioni frontali. Le 
esercitazioni consegnate saranno utili al docente per verificare la partecipazione alle 
esercitazioni e la comprensione degli argomenti svolti a lezione.  

Agli studenti non frequentanti non è richiesta la sottomissione delle 
esercitazioni.  

 



 

Risultati di 
apprendimento 
previsti 

Nella sezione Risultati di apprendimento previsti è necessario riportare 
sinteticamente enunciazioni generali dei tipici risultati conseguiti dagli studenti in 
ogni insegnamento; definiscono pertanto quali sono i risultati dell’apprendimento. 
Non vanno intesi come prescrizioni; non rappresentano soglie o requisiti minimi e 
non sono esaustivi; i descrittori mirano a identificare la natura del dell'insegnamento 
nel suo complesso; non hanno carattere disciplinare e non sono circoscritti in 
determinate aree accademiche o professionali. 
 
Attenzione sono DIVERSI per ogni ciclo di studi, dalla triennale al dottorato. Qui 
ne trovate una descrizione esaustiva: https://www.unipi.it/index.php/qualita-
didattica/item/21031-descrittori-di-dublino 
 

Conoscenza e capacità di 
comprensione 
 

 
• Acquisire la conoscenza degli aspetti teorici e pratici relativi alla 

progettazione delle soluzioni di problemi (problem solving) mediante l’uso 
del computer e la conoscenza degli strumenti che si utilizzano per la 
programmazione. 

• Acquisire conoscenze che consentano allo studente di comprendere come si 
può indicare ad un elaboratore elettronico (macchina automatica di impiego 
universale, hardware) la soluzione di un problema o di una classe di 
problemi, che l'elaboratore può risolvere, con un metodo ed un linguaggio 
appropriato, creando un apposito programma (software) eseguibile 
dall'elaboratore. 

• Acquisire la capacità di ragionare ed individuare una soluzione ad un 
problema (algoritmo) secondo il paradigma della programmazione 
imperativa strutturata. 

• Acquisire autonomia di studio nella disciplina e vocabolario tecnico.  
 

Conoscenza e capacità di 
comprensione applicate 
 

 
• Comprendere l'uso di un linguaggio di progettazione non convenzionale (es. 

pseudocodice) e l'uso di una rappresentazione grafica (es. flow chart) per 
descrivere con un formalismo semplice un algoritmo; 

• Comprendere il lessico, la sintassi e la semantica del linguaggio di 
programmazione C; 

• Acquisire la capacità di scrivere un programma strutturato in linguaggio C; 
• Acquisire la capacità di individuare casi di test per il dominio cui fa riferimento 

il programma creato; 
• Acquisire la capacità di utilizzare un ambiente di sviluppo per trasformare il 

programma sorgente (in C) in programma eseguibile ed eseguirlo. 
 

Competenze trasversali 
 

 
 
Autonomia di giudizio 
 

• Acquisire la capacità di verificare che l'algoritmo individuato risponda alle 
specifiche di un problema; 

• Saper valutare e interpretare in maniera autonoma diverse strategie 
risolutive analizzando gli algoritmi proposti e fornendo soluzioni 
alternative. 

• Acquisire la capacità di verificare che i risultati ottenuti dopo l'esecuzione 
del programma siano quelli attesi. 

 
Abilità comunicative 
 

• Imparare a commentare il codice prodotto al fine di renderlo comprensibile 
e agevolmente modificabile da altri professionisti, con l'obiettivo di 
sviluppare in team. 



 

 
Capacità di apprendere in modo autonomo 
 

• Capacità di approfondire concetti attraverso lo studio autonomo di 
materiale 

• didattico bibliografico anche attraverso piattaforme di e-learning. 
• Capacità di completare autonomamente il percorso formativo previsto dal 

testo di riferimento, oltre i contenuti previsti dal programma 
dell'insegnamento. 

• Capacità di riutilizzare le conoscenze acquisite sia in situazioni 
problematiche nuove, sia in contesti nuovi di programmazione imperativa. 

  

Valutazione   

Modalità di verifica 
dell’apprendimento 

 

Valutazione Formativa (utile per monitorare il raggiungimento degli obiettivi) 

• Esercitazioni da svolgere in itinere (non obbligatorie). 
• Test a risposta multipla proposti durante le lezioni.  

Le esercitazioni e i test non saranno soggetti a valutazione ma saranno utilizzati per 
verificare il raggiungimento degli obiettivi. 

Valutazione Sommativa (Esame): 

• Prova scritta/di laboratorio: la prova si svolge nei laboratori di informatica e 
consiste nella soluzione di un problema complesso. La prova ha durata di circa 3 
ore ed è richiesto di applicare tutte le fasi del problem solving, dall’analisi 
passando per la progettazione e terminando con la codifica in linguaggio C. La 
prova scritta è propedeutica alla prova orale e si considera superata con un 
punteggio minimo di 16/30.  
• Prova orale: consiste nella visione della prova scritta e discussione degli 
eventuali errori commessi. Durante la prova orale saranno poste due riguardanti la 
parte teorica trattata durante il corso. 
 

La prova esonerante, in forma scritta e articolata in domande a risposta aperta ed 
esercizi di programmazione in C, si terrà al termine di un numero congruo di argomenti 
teorici. Sarà valutata in trentesimi, si ritiene superata se il suo voto è maggiore di 18 e il 
suo superamento esonera lo studente dallo svolgimento della prova orale. I voti di 
questa prova esonerante possono essere utilizzati esclusivamente fino a Settembre. Lo 
studente può, se preferisce, rinunciare al voto della prova esonerante e partecipare alla 
prova orale.  

 
Il voto finale conseguito è calcolato come media dei voti ottenuti alle due prove (prova 
di laboratorio e prova orale/prova esonerante) e viene comunicato tramite piattaforma 
Esse3. 

Criteri di valutazione  
 

 
Conoscenza e capacità di comprensione: 
• Lo studente dovrà essere in grado di analizzare problemi formulando anche 

ipotesi aggiuntive, individuando i dati necessari e sufficienti per la soluzione e 
fornendone la descrizione. 

• Dovrà essere in grado di individuare una strategia di soluzione che prevede la 
scomposizione del problema in sottoproblemi e di saper rappresentare sia la 
scomposizione sia gli algoritmi con adeguati linguaggi di descrizione. 



 

• Dovrà dimostrare di saper implementare la soluzione proposta utilizzando il 
linguaggio imperativo di riferimento e di saperla testare su campioni di dati. 

• Dovrà essere in grado di generalizzare soluzioni per una classe di problemi con lo 
stile della programmazione strutturata. 

Conoscenza e capacità di comprensione applicate: 
• Dovrà essere in grado di individuare una strategia di soluzione che prevede la 

scomposizione del problema in sottoproblemi e di saper rappresentare sia la 
scomposizione sia gli algoritmi con adeguati linguaggi di descrizione. 

• Dovrà dimostrare di saper implementare la soluzione proposta utilizzando il 
linguaggio imperativo di riferimento e di saperla testare su campioni di dati. 

Autonomia di giudizio: 
• Lo studente dovrà essere in grado di correggere e validare il corretto 

funzionamento dei programmi sviluppati. 
• Dovrà essere in grado di discutere le soluzioni proposte chiarendo le scelte 

progettuali e implementative. 
Abilità comunicative: 
• Lo studente dovrà essere in grado di rendere il codice scritto comprensibile ad 

altri, mediante la sua descrizione generale e commenti specifici alle istruzioni e 
alle strutture di controllo utilizzate. 

• Dovrà dimostrare di aver acquisito piena conoscenza dei concetti presentati a 
lezione nonché degli algoritmi fondamentali. 

Capacità di apprendere: 
• Lo studente dovrà essere in grado di trasformare autonomamente algoritmi 

descritti con flowchart in programmi in linguaggio C; 
• Lo studente dovrà essere in grado di utilizzare le soluzioni alternative descritte nel 

testo di riferimento, se non descritte nel corso delle lezioni, come ad esempio le 
diverse modalità di dichiarazione delle variabili.  

Criteri di misurazione 
dell'apprendimento e di 
attribuzione del voto finale 

 
 
 
 

Voto  Descrittori 
< 18 

insufficiente 
Conoscenze frammentarie e superficiali dei contenuti, errori nell’applicare 
i concetti, descrizione carente. 

18 - 20 Conoscenze dei contenuti sufficienti ma generali, descrizione semplice, 
incertezze nell’applicazione di concetti teorici. 

21 - 23 Conoscenze dei contenuti appropriate ma non approfondite, capacità di 
applicare i concetti teorici, capacità di presentare i contenuti in modo 
semplice. 

24 - 25 Conoscenze dei contenuti appropriate ed ampie, discreta capacità di 
applicazione delle conoscenze, capacità di presentare i contenuti in modo 
articolato. 

26 - 27 Conoscenze dei contenuti precise e complete, buona capacità di applicare 
le conoscenze, capacità di analisi, descrizione chiara e corretta. 

28 - 29 Conoscenze dei contenuti ampie, complete ed approfondite, buona 
applicazione dei contenuti, buona capacità di analisi e di sintesi, 
descrizione sicura e corretta. 

30 
30 e lode 

Conoscenze dei contenuti molto ampie, complete ed approfondite, 
capacità ben consolidata di applicare i contenuti, ottima capacità di 
analisi, di sintesi e di collegamenti interdisciplinari, padronanza di 
descrizione. 

 
 

Altro  
 
Si suggerisce agli studenti di affidarsi esclusivamente alle 
informazioni/comunicazioni fornite sui siti ufficiali del Dipartimento di Informatica, 



 

ovvero sui gruppi social solo se costituiti e amministrati esclusivamente dai docenti 
dei relativi insegnamenti: 
  
● https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-laurea 
● https://www.uniba.it/it/ricerca/dipartimenti/informatica 
● https://elearning.uniba.it/ 
  
I programmi di tutti gli insegnamenti sono disponibili al seguente link: 
● https://elearning.uniba.it/ 
 
  
Le informazioni che tutti gli studenti dovrebbero conoscere sono scritte nei 
regolamenti didattici dei Corsi di Studi disponibili nel sito: 

● https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-
laurea 

Si suggerisce agli studenti di diffidare delle informazioni e dei materiali circolanti su 
siti o gruppi social non ufficiali, poiché spesso sono risultati non affidabili, non 
corretti o incompleti. Per ogni dubbio, chiedere un incontro al docente secondo le 
modalità previste per il ricevimento. 
 

_____________ 
 
Il link per accedere al materiale del corso è il seguente 
https://elearning.uniba.it/course/view.php?id=2830 
La chiave di iscrizione sarà fornita durante le lezioni.  

 
 
 



 

NOTE (da eliminare al termine della compilazione del programma in inglese): 
- In italiano la didattica è organizzata in didattica frontale, o lezione, e in esercitazione con presenza 

del docente (in aula o in laboratorio). In inglese chiamiamo “class” sia una lezione che una 
esercitazione col docente, chiamiamo “lecture” una lezione col docente e “practice session” una 
esercitazione in aula o in laboratorio. 

- Gli appelli d’esame nell’anno accademico li chiamiamo “official dates of the exam in the academic 
year” 

- La prenotazione all’esame su ESSE3 la chiamiamo ”registration to the exam in ESSE3” 
- La prova di esonero a metà semestre la chiamiamo “middle term partial exam” 

 

Main information on the course 

Course name  Programming (Track E-M) 

Degree Informatica 

Academic year 2025/26 

European Credit Transfer and Accumulation System 
(ECTS), in Italian Crediti Formativi Universitari (CFU)  

9 CFU 
(each CFU corresponds to 25 hours (h) of student’s time); 
CFU are of type T1, T2 or T3 
T1 = 8 h lecture + 17 h individual study 
T2 = 15 h practice + 10 h individual study 
T3 = 25 h individual study 

Settore Scientifico Disciplinare INF/01 
Course language Italian 
Course year First 
Course period First Semester - exact dates can be found in the didactic regulations 
Course attendance requirement None, but it is highly recommended to attend classes 

Website of the Degree https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-
laurea/corsi-di-laurea 

  

Teacher(s)  

Name and Surname Veronica Rossano 
email Veronica.rossano@uniba.it 
phone +39 080 544 2477 

office Department of Computer Science, Via Orabona 4, 70125, Bari. Room n.772, 7^ 
floor. 

e-learning platform UNIBA e-learning platform - https://elearning.uniba.it/course/view.php?id=2830  
Teacher’s homepage https://www.uniba.it/it/docenti/rossano-veronica   
Office hours Every day by appointment by e-mail or on MsTeams. 
 
    

Syllabus  

Course goals 

The course aims to introduce problem solving methodology and the basic elements 
of structured imperative programming to formulate algorithmic solutions to 
problems of varying complexity. In particular, the student will acquire the ability to 
apply problem solving techniques, to identify solution strategies of an algorithmic 
nature and to use the C programming language to implement them. 

Prerequisites/requirements 

 
No computer skills of any kind are required to attend the Computer Science degree 
course, but a good preparation in basic secondary school subjects is indispensable, 
particularly mathematical, logical and reasoning skills. 



 

 
 

Course program 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Books of reference 

 
Primary text: 
P. Deitel and H. Deitel, C Programming Language – Fundamentals and 
Programming Techniques, 8th Edition - Pearson 2016 - ISBN: 9788891901651 
(subsequent and previous editions from the 4th onwards are also acceptable). 
 
Optional supplementary text: 
W. B. Kernighan, D.M. Ritchie. The C Programming Language. Principles of 
Programming and Reference Manual. 
 
Students can borrow the texts from the library. It is advisable to check availability 
through the University Library System 
https://opac.uniba.it/easyweb/w8018/index.php? and contact the library to arrange 
the loan. 
 
 

Notes to the books 

During the lectures, the instructor will illustrate concepts using slides that 
summarize the course content. The slides will be made available at the end of each 
lesson on the ADA platform of the department (see 'virtual office' above). 
Additionally, all exam simulations already carried out are available on the ADA 
platform. 
 
 



 

Organization of the 
didactic activities  

 

Hours 
Total Lectures Practice sessions Project work Individual study  
300 hours 72 Hours  45  hours  hours 183 hours 
CFU/ETCS 
 12 CFU  9 CFU  3 CFU CFU  
  

Teaching methods  

 

 
The course is organized into lectures with slides, guided exercises conducted in the 
classroom, and exercises carried out independently at home. The guided exercises 
will be conducted in the classroom using the Bring Your Own Device (BYOD) 
approach. The exercises conducted in the classroom and at home must be 
completed individually by each student and submitted on the ADA platform 
according to the guidelines and deadlines communicated during the lectures. The 
exercises submitted will be useful for the instructor to verify participation in the 
exercises and understanding of the topics covered in class. Non-attending students 
are not required to submit the exercises. 
 
 
 
 
 

 

Expected learning 
outcomes 

 

Knowledge and 
understanding 

 
• Understand the basic elements of programming. 
• Understand problem-solving techniques. 
• Understand the process of translating an algorithm into a program using a 

programming language. 

Applying knowledge and 
understanding 
 

• Apply problem-solving techniques to identify and formulate algorithmic solutions. 
• Use the C programming language to implement algorithmic solutions. 
• Develop programs that meet specified requirements. 

Other skills 
 

Making judgements 
• Evaluate different problem-solving approaches. 
• Assess the effectiveness of algorithmic solutions. 
• Make informed decisions about the most appropriate programming constructs to 

use. 
 
 
Communication  

• Communicate effectively about problem-solving approaches and solutions. 
• Use appropriate terminology to describe programming concepts and structures. 

Learning skills 
 

• Develop the ability to learn independently. 
• Acquire skills to keep up-to-date with advancements in programming and problem-

solving methodologies. 
 



 

 

  

Assessment   

Assessment methods 

 
 
Formative Assessment (useful to motivate students attending the class) 
 

• Exercises to be carried out during the course (not mandatory). 
• Participation in the exercises and their submission, according to the 

methods and deadlines communicated during the lectures, contribute to 
awarding a bonus (from 0 to 2 points in proportion to the number and 
quality of the submitted exercises). This bonus can be used only until the 
end of the first session (June/July exams). 

• Exercises submitted beyond the communicated deadlines or in ways 
different from those communicated will not be considered. 

 
Not completing the exercises during the course does not prejudice the achievement 
of the maximum grade in the exam. 
 
Summative Assessment (Exam): 
 

• Written/Laboratory test: The test takes place in the computer labs and 
consists of solving a complex problem. The test lasts approximately 3 
hours and requires applying all phases of problem-solving, from analysis 
to design and finally coding in the C language. The written test is 
preparatory to the oral exam and is considered passed with a minimum 
score of 16/30. 

• Oral test: This involves reviewing the written test and discussing any 
mistakes made. During the oral test, two questions related to the 
theoretical part covered during the course will be asked. 

 
The middle term partial exam, in written form and consisting of close and open-
ended questions and C programming exercises, is held after a consistent number of 
topics. It will be graded out of thirty, and is considered passed if the score is greater 
than 18. Passing the exemption test exempts the student from the oral test. The 
grades from this middle term partial exam can be used exclusively until 
September. The student can, if preferred, waive the grade of the exemption test and 
take the oral test. 
 
The final grade achieved is calculated as the average of the grades obtained in the 
two tests (laboratory test and oral test/exemption test) and is communicated via the 
Esse3 platform. 
 
 
 
 

Evaluation criteria  



 

 Knowledge and Understanding: 
 

• The student should be able to analyze problems by formulating additional 
hypotheses, identifying the necessary and sufficient data for the solution, 
and providing a description of it. 

• They should be able to identify a solution strategy that involves breaking 
the problem down into sub-problems and be able to represent both the 
decomposition and the algorithms with appropriate description languages. 

• They should demonstrate the ability to implement the proposed solution 
using the reference imperative language and test it on data samples. 

• They should be able to generalize solutions for a class of problems using 
the style of structured programming. 

 
Applied Knowledge and Understanding: 
 

• They should be able to identify a solution strategy that involves breaking 
the problem down into sub-problems and be able to represent both the 
decomposition and the algorithms with appropriate description languages. 

• They should demonstrate the ability to implement the proposed solution 
using the reference imperative language and test it on data samples. 

 
Judgment Autonomy: 

• The student should be able to correct and validate the correct functioning 
of the developed programs. 

• They should be able to discuss the proposed solutions, clarifying the 
design and implementation choices. 

Communication Skills: 
• The student should be able to make the written code understandable to 

others through its general description and specific comments on the 
instructions and control structures used. 

• They should demonstrate having fully acquired knowledge of the concepts 
presented in class as well as the fundamental algorithms. 

Learning Skills: 

• The student should be able to independently transform algorithms 
described with flowcharts into programs in the C language. 

• The student should be able to use alternative solutions described in the 
reference text, if not covered during the lessons, such as different ways of 
declaring variables. 

 

Measurements and final grade 
 
 
 



 

 

 

Further information  
Students are advised to rely exclusively on the information/communications 
provided on the official websites of the Computer Science Department, or on social 
groups only if set up and administered exclusively by the teachers of the related 
courses: 

• https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-
dilaurea/corsi-di-laurea 

• https://www.uniba.it/it/ricerca/dipartimenti/informatica 
• https://elearning.di.uniba.it/ 

Course schedules are available here: 
• https://programmi.di.uniba.it/ 

 
The information that all students should know is written in the Teaching regulations 
and study posters available on the site: 

• https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-
dilaurea/corsi-di-laurea 

 
Students are advised to be wary of information circulating on unofficial sites or 
social groups, as they are often found to be unreliable, incorrect or incomplete. 
 
Link to the course on the ADA department e-learning platform: 
https://elearning.di.uniba.it/ 
 
 
 
 
 

 


