

Principali informazioni sull’insegnamento

Denominazione

dell’insegnamento
Programmazione (track cognomi A-D)

Corso di studio Informatica

Anno Accademico 2025/26

Crediti formativi universitari (CFU) / European

Credit Transfer and Accumulation System (ECTS)

Crediti formativi universitari (CFU) / European Credit

Transfer and Accumulation System (ECTS)

Settore Scientifico Disciplinare ING-INF/05

Lingua di erogazione Italiano

Anno di corso Primo

Periodo di erogazione 1^ semestre, le date esatte sono riportate nel manifesto/regolamento

Obbligo di frequenza NO, ma la frequenza è fortemente raccomandata

Sito web del corso di studio
https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-

laurea/corsi-di-laurea

Docente/i

Nome e cognome Fabio Abbattista

Indirizzo mail Fabio.abbattista@uniba.it

Telefono 080-5443298

Sede Dipartimento di Informatica, Via Orabona 4, 70125, Bari. Stanza n.666, 6^ piano.

Sede virtuale Piattaforma e-learning UNIBA - https://elearning.uniba.it/

Sito web del docente

Ricevimento (giorni, orari e

modalità, es. su appuntamento)
Martedì 15:00 – 16:00, ma anche per e-mail

Syllabus

Obiettivi formativi

Il corso si propone di introdurre gli elementi base della programmazione imperativa

strutturata per formulare soluzioni algoritmiche a problemi di complessità limitata.

In particolare, lo studente acquisirà la capacità di usare il linguaggio di

programmazione C come strumento per modellare problemi e formalizzarne le

soluzioni.

Prerequisiti

Buona comprensione della lingua inglese

Contenuti di insegnamento

(Programma)

Mod Argomenti (l’indicazione oraria si intende stimata) Ore

1

Presentazione del corso.

Introduzione alla programmazione.

Un primo algoritmo in pseudocodice: cucinare un primo.

3

2
Gli algoritmi.

Lo pseudocodice.
3

3

Le strutture di controllo:

Il comando di selezione if.

Il comando di selezione if else.

Il comando di iterazione while.

3

4

Esercitazione sugli algoritmi: la somma di 2 numeri come

incrementi successivi.

Esercitazione sugli algoritmi: il prodotto di 2 numeri come

somme successive.

4

5
Formulazione degli algoritmi con processo top down per

raffinamenti successivi.
3

6 Strutture di controllo nidificate. 3

7
Esercitazione sulle strutture di controllo nidificate con uso di

pseudocodice.
4

8
Formulazione degli algoritmi con processo top down per

raffinamenti successivi: studio di un caso.
3

9
Gli operatori logici.

Operatori di uguaglianza (= =) e di assegnamento (=).
3

10
Esercitazione sulle strutture di controllo nidificate con uso di

pseudocodice.
4

11
Tipi di dato semplici: interi, reali, caratteri e loro

rappresentazione in C.
3

12

I vettori.

La dichiarazione dei vettori.

Esempi sui vettori.

3

13 Esercitazione sui vettori: ricerca del massimo. 4

14

Studio di un caso: calcolare la media e la mediana usando i

vettori.

La ricerca nei vettori (lineare e binaria).

3

15

Uso del compilatore.

Ambiente di sviluppo Eclipse.

Cenni al debugging.

3

16
Esercitazione sui vettori: ricerca di un valore, ricerca di un

valore vincolato.
4

17 Istruzioni di controllo in C: selezione e iterazione. 3

18 Istruzioni di Input/Output del C. 3

19
Esercitazione in C: codifica degli algoritmi realizzati in

precedenza.
4

20

Astrazione sui dati.

Tipi di dato utente.

Operazioni di accesso alle strutture dati utente.

3

21 Matrici e tabelle come dati utente: i record. 3

22
Manipolazione delle matrici.

Esercitazione sui vettori bidimensionali.
4

23
Astrazione funzionale: funzioni e procedure e loro realizzazione

in pseudocodice.
3

24
Le funzioni in C: le definizioni di funzione e i prototipi di

funzione.
3

25
Esercitazione con le funzioni in C: decomporre un semplice

programma in 3 funzioni, input, elaborazione e output.
4

26
Lo stack delle chiamate di funzione e i record di attivazione.

Regole di visibilita’ in C.
3

27 Invocare le funzioni: chiamata per valore e per riferimento. 3

28
Esercitazione con le funzioni in C: lo scambio di 2 valori,

somma di vettori.
4

29
Vettori statici ed automatici.

Passare i vettori come argomento delle funzioni.
3

30

Puntatori: dichiarazione e inizializzazione.

Operatore di indirizzo (&) e operatore di dereferenziazione (*).

Puntatori come parametri di funzioni.

3

31
Esercitazione sui puntatori: trovare il massimo e il minimo di un

vettore passato come argomento alla funzione.
4

32

La gerarchia dei dati.

I file e gli stream.

Creare un file ad accesso sequenziale.

Leggere e scrivere i dati da un file ad accesso sequenziale.

3

33

I file ad accesso casuale.

Creare un file ad accesso casuale.

Leggere e scrivere dati da un file ad accesso casuale.

3

34
Esercitazione sui file sequenziali: creazione di un file di testo e

aggiornamento del contenuto del file di testo
4

35
Introduzione alla ricorsione: fattoriale ricorsivo, ricerca binaria

ricorsiva e Torre di Hanoi
3

Testi di riferimento

Testo da cui studiare:

P. Deitel e H. Deitel

Il linguaggio C – Fondamenti e tecniche di programmazione

8^edizione - Pearson 2016 - ISBN: 9788891901651

(vanno bene anche le edizioni successive e precedenti dalla 4^ in poi)

Testo integrativo, facoltativo:

J.R. Hanly, E.B. Koffman, Problem solving e programmazione in C, Apogeo, 2013.

ISBN: 8838786410

Gli studenti che lo desiderano possono ottenere i testi in prestito dalla Biblioteca. Può

convenire verificarne la disponibilità mediante il Sistema Bibliotecario di Ateneo

https://opac.uniba.it/easyweb/w8018/index.php? e contattare la biblioteca per

concordare il prestito.

Note ai testi di riferimento

Nel corso delle lezioni il docente utilizzerà delle slide che verranno fornite. Il testo

di riferimento contiene tutti gli argomenti del corso attinenti al linguaggio di

programmazione C, pertanto si consiglia di studiare dal testo e di svolgere in

autonomia e costantemente tutti gli esercizi inseriti alla fine di ogni capitolo trattato

a lezione.

Sul sito del corso (v. sopra 'sito web del corso') sono disponibili:

● Materiale didattico utilizzato a lezione;

● alcune tracce di prove scritte di esami, con esempi di tracce svolte;

Organizzazione della

didattica

Ore

Totali Didattica frontale Laboratorio ed esercitazioni Studio individuale

300 ore 72 ore 45 ore 183 ore

CFU/ETCS

12 CFU 9 CFU 3 CFU

Metodi didattici

Lezioni frontali, esercitazioni ed attività autonome e di gruppo in aula e a casa (come

dettagliato nel programma). Gli studenti non frequentanti possono lavorare

singolarmente prendendo accordi con il docente.

Risultati di

apprendimento

previsti

Conoscenza e capacità di

comprensione

● Acquisire conoscenze che consentano allo studente di comprendere come si

può indicare ad un elaboratore elettronico (macchina automatica di impiego

universale, hardware) la soluzione di un problema o di una classe di problemi, che

l'elaboratore può risolvere, con un metodo ed un linguaggio appropriato, creando un

apposito programma (software) eseguibile dall'elaboratore.

● Acquisire la capacità di ragionare ed individuare una soluzione ad un

problema (algoritmo) secondo il paradigma della programmazione imperativa

strutturata;

Conoscenza e capacità di

comprensione applicate

● Comprendere l'uso di un linguaggio di progettazione non convenzionale (es.

pseudocodice) per descrivere con un formalismo semplice un algoritmo;

● Comprendere il lessico, la sintassi e la semantica del linguaggio di

programmazione C;

● Acquisire la capacità di scrivere un programma strutturato in linguaggio C;

● Acquisire la capacità di individuare casi di test per il dominio cui fa

riferimento il programma creato;

● Acquisire la capacità di utilizzare un ambiente di sviluppo (es. Eclipse) per

trasformare il programma sorgente (in C) in programma eseguibile ed eseguirlo.

Competenze trasversali

Autonomia di giudizio

● Acquisire la capacità di verificare che l'algoritmo individuato risponda alle

specifiche di un problema;

● Acquisire la capacità di verificare che i risultati ottenuti dopo l'esecuzione

del programma siano quelli attesi.

Abilità comunicative

● Imparare a commentare il codice prodotto al fine di renderlo comprensibile

e agevolmente modificabile da altri professionisti, con l'obiettivo di sviluppare in

team.

Capacità di apprendere in modo autonomo

● Capacità di approfondire concetti attraverso lo studio autonomo di materiale

prodotto e proposto dal docente;

● Capacità di completare autonomamente il percorso formativo previsto dal

testo di riferimento, oltre i contenuti previsti dal programma dell'insegnamento.

Valutazione

Modalità di verifica

dell’apprendimento

Alcune prove di valutazione intermedie, con valore esonerante, si svolgono nelle ore

di esercitazione del corso, a partire da inizio novembre. Le prove consistono nella

soluzione di un problema individuando l'algoritmo e sviluppando il relativo

programma in C, analogamente a quanto spiegato nel corso delle lezioni. Il voto sarà

espresso in booleano.

L'esonero puo’ essere utilizzato esclusivamente nella prima sessione di esami

(gennaio/febbraio).

La votazione è in trentesimi.

Gli studenti che scelgono di non partecipare alle prove di valutazione intermedie,

ovvero non le superano, sostengono l'esame a partire da gennaio.

La modalità della prova d'esame regolare è analoga a quella descritta sopra per le

prove intermedie.

Materiali permessi per sostenere le prove di valutazione intermedia e la prova scritta

d'esame: testo di riferimento in formato esclusivamente cartaceo.

Il voto finale conseguito viene proposto esclusivamente sulla piattaforma Esse3.

Incentivi alla frequenza: l'eventuale lode viene più frequentemente attribuita agli

studenti che per la stragrande maggioranza delle lezioni hanno frequentato, interagito

nel corso della lezione, proposto soluzioni e risolto i casi proposti dal docente a

lezione.

Criteri di valutazione

● Conoscenza e capacità di comprensione:
o Lo studente dovrà essere in grado di analizzare e risolvere semplici

problemi e di generalizzare soluzioni per una classe di problemi con

lo stile della programmazione strutturata.

● Conoscenza e capacità di comprensione applicate:
o Lo studente dovrà essere in grado di codificare le soluzioni ideate

descrivendole in pseudocodice e nel linguaggio di programmazione

C;

o Lo studente dovrà essere in grado di utilizzare un ambiente di

sviluppo e dimostrare di conoscere il linguaggio C;

● Autonomia di giudizio:
o Lo studente dovrà essere in grado di correggere e validare il corretto

funzionamento dei programmi sviluppati.

● Abilità comunicative:
o Lo studente dovrà essere in grado di rendere il codice scritto

comprensibile ad altri, mediante la sua descrizione generale e

commenti specifici alle istruzioni e alle strutture di controllo

utilizzate.

● Capacità di apprendere:
o Lo studente dovrà essere in grado di trasformare autonomamente

algoritmi descritti con pseudo-codice in programmi in linguaggio C;
o Lo studente dovrà essere in grado di utilizzare le soluzioni alternative

descritte nel testo di riferimento, se non descritte nel corso delle

lezioni, come ad esempio le diverse modalità di dichiarazione delle

variabili.

Criteri di misurazione

dell'apprendimento e di

attribuzione del voto finale

Voto Descrittori

< 18

insufficien

te

Conoscenze frammentarie e superficiali dei contenuti, errori nell’applicare

i concetti, descrizione carente.

18 - 20 Conoscenze dei contenuti sufficienti ma generali, descrizione semplice,

incertezze nell’applicazione di concetti teorici.

21 - 23 Conoscenze dei contenuti appropriate ma non approfondite, capacità di

applicare i concetti teorici, capacità di presentare i contenuti in modo

semplice.

24 - 25 Conoscenze dei contenuti appropriate ed ampie, discreta capacità di

applicazione delle conoscenze, capacità di presentare i contenuti in modo

articolato.

26 - 27 Conoscenze dei contenuti precise e complete, buona capacità di

applicare le conoscenze, capacità di analisi, descrizione chiara e corretta.

28 - 29 Conoscenze dei contenuti ampie, complete ed approfondite, buona

applicazione dei contenuti, buona capacità di analisi e di sintesi,

descrizione sicura e corretta.

30
30 e lode

Conoscenze dei contenuti molto ampie, complete ed approfondite,
capacità ben consolidata di applicare i contenuti, ottima capacità di

analisi, di sintesi e di collegamenti interdisciplinari, padronanza di

descrizione.

Altro

Si suggerisce agli studenti di affidarsi esclusivamente alle

informazioni/comunicazioni fornite sui siti ufficiali del Dipartimento di Informatica,

ovvero sui gruppi social solo se costituiti e amministrati esclusivamente dai docenti

dei relativi insegnamenti:

● https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-laurea

● https://www.uniba.it/it/ricerca/dipartimenti/informatica

● https://elearning.uniba.it/

I programmi degli insegnamenti sono disponibili qui:

● https://elearning.uniba.it/

Le informazioni che tutti gli studenti dovrebbero conoscere sono scritte nei

Regolamenti didattici e manifesti degli studi disponibili nel sito:

● https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-di-

laurea/corsi-di-laurea

Si suggerisce agli studenti di diffidare delle informazioni e dei materiali circolanti su

siti o gruppi social non ufficiali, poiché spesso sono risultati non affidabili, non

corretti o incompleti. Per ogni dubbio, chiedere un incontro al docente secondo le

modalità previste per il ricevimento.

Main information on the course

Course name Programmazione (track cognomi A-D)

Degree Informatica

Academic year 2025/26

European Credit Transfer and Accumulation System

(ECTS), in Italian Crediti Formativi Universitari (CFU)

European Credit Transfer and Accumulation System

(ECTS) , in Italian Crediti formativi universitari (CFU)

Settore Scientifico Disciplinare ING-INF/05

Course language Italian

Course year First

Course period 1st semester, the exact dates are indicated annually in the degree course regulations

Course attendance requirement It is highly recommended to attend classes

Website of the degree e-learning UNIBA - https://elearning.uniba.it/

Teacher(s)

Name and Surname Fabio Abbattista

email Fabio.abbattista@uniba.it

phone 080-5443298

office Dipartimento di Informatica, Via Orabona 4, 70125, Bari. Stanza n.666, 6^ piano.

e-learning platform Microsoft Teams – Canale Programmazione A – Informatica – 2024-25

Teacher’s homepage

Office hours Tuesday 15:00 – 16:00, and by email

Syllabus

Course goals

The course aims to introduce the basic elements of structured imperative

programming to formulate algorithmic solutions to problems of limited complexity.

In particular, the student will acquire the ability to use the C programming language

as a tool for modeling problems and formalizing their solutions.

Prerequisites/requirements

Good understanding of the English language.

Course program

Mod Topics
Hou

rs

1

Course presentation.

Introduction to computer programming.

A first algorithm: to cook a first course.

3

2
Algorithms.

Pseudo-code.
3

3

Control structures:

Selection structure (if-then).

Binary selection structure (if-then-else).

Iterative structure (while).

3

4

Algorithm exercise: Summing 2 numbers by using increments.

Algorithm exercise: Multiplying 2 numbers by using

increments.

4

5 Designing algorithms by stepwise refinements. 3

6 Nested control structures. 3

7 Nested structure control exercise using pseudo-code. 4

8 Designing algorithms by stepwise refinements: Case study 3

9
Boolean operators.

Equality operator (= =) and assignment operator (=).
3

10 Nested structure control exercise using pseudo-code. 4

11
Simple data types: Integer, real, character and their

representation in the C language.
3

12

Array.

Array statement.

Array examples.

3

13 Array exercise: Finding the maximum element. 4

14
Case study: Computing average and median using arrays.

Serach algorithms for array (linear and binary algorithms).
3

15

Using a compiler.

Eclipse development environment.

Brief introduction to debugging.

3

16
Array exercise: Searching an element, searching a bounded

element.
4

17 Control structures in C language: Selection and iteration. 3

18 Input/Output instructions in C language. 3

19
C language exercise: Coding the previously designed

algorithms.
4

20

Data abstraction.

User defined data types.

Access procedures to user defined data structures.

3

21 User defined matrices and tables: Record data structure. 3

22
Handling matrices.

Exercises on bi-dimensional arrays.
4

23
Functional abstraction: Functions, procedures and their design

with pseudo-code.
3

24 Functions in C language: Functions definition and prototype. 3

25
Function exercise in C language: Decomposing a function into 3

functions, input, processing and output.
4

26
Function calls stack and the activation record.

Visibility rules in C language.
3

27 Function calls: By value and by reference. 3

28
Function exercise in C language: Swapping the values of two

variables, summing the elements of an array.
4

29
Static and automatic vectors.

Array as function arguments.
3

30

Pointers: Definition and initialization

Address operator (&) e dereference operator (*)

Pointers as functions arguments.

3

31
Pointers exercise: Finding maximum and minimum of an array

passed as argument to the function.
4

32

Data hierarchy

Files and streams.

To create a sequential access file.

To read and write data from a sequential access file.

3

33

Random access file.

To create a random access file.

To read and write data from a random access file.

3

34
Sequentiual access file exercise: Creating a text file, updating

the content of the text file.
4

35

Introduction to recursive algorithms: recursive factorial

algorithm, Recursive binary search algorithm, Hanoi tower

algorithm.

3

Books of reference

Text to study from::

P. Deitel e H. Deitel

Il linguaggio C – Fondamenti e tecniche di programmazione

8^edizione - Pearson 2016 - ISBN: 9788891901651

Additional text, optional:

J.R. Hanly, E.B. Koffman, Problem solving e programmazione in C, Apogeo, 2013.

ISBN: 8838786410

Students who wish can obtain texts on loan from the Library. Could it be

convenient to check their availability through the University Library System

https://opac.uniba.it/easyweb/w8018/index.php? and contact the library to arrange

the loan.

Notes to the books

During the lessons the teacher will use slides that retrace the contents of the book,

therefore they will not be provided. The reference text contains all the topics of the

course, therefore it is advisable to study from the text and to carry out

independently and constantly all the exercises included at the end of each chapter

covered in class.

On the Google groups platform (see above 'virtual office') are available:

• supporting video material used in class;
• some traces of written tests of exams, with examples of traces carried out;

Organization of the

didactic activities

Hours

Total Lectures Practice sessions Individual study

300 hours 72 hours 45 hours 183 hours

CFU/ETCS

 12 CFU 9 CFU 3 CFU

Teaching methods

Lectures, exercises and autonomous and group activities in the classroom and at

home (as detailed in the program). Non-attending students can work individually by

making arrangements with the teacher.

Expected learning

outcomes

Knowledge and

understanding

• Acquire knowledge that allows the student to understand how it is possible to

indicate to an electronic computer (automatic machine for universal use, hardware)

the solution of a problem or a class of problems, which the computer can solve,

with a method and a appropriate language, creating a special program (software)

executable by the computer.

• Acquire the ability to reason and identify a solution to a problem (algorithm)

according to the paradigm of structured imperative programming;

Applying knowledge and

understanding

Understand the use of an unconventional design language (eg pseudocode) to

describe an algorithm with a simple formalism;

• Understand the lexicon, syntax and semantics of the C programming language;

• Acquire the ability to write a structured program in C language;

• Acquire the ability to identify test cases for the domain to which the created

program refers;

• Acquire the ability to use a development environment (eg Eclipse)

to transform the source program (in C) into an executable program and run it.

Other skills

Making judgements

• Acquire the ability to verify that the identified algorithm meets the specifics of a

problem;

• To acquire the ability to verify that the results obtained after the execution of the

program are those expected.

Communication

• Learn how to comment the product code in order to make it understandable and

easily modifiable by other professionals, with the aim of developing in a team.

Learning skills

• Ability to deepen concepts through the independent study of video material

produced and proposed by the teacher;

• Ability to autonomously complete the educational path envisaged by the reference
textbook, in addition to the contents envisaged by the teaching programme.

Assessment

Assessment methods

Some mid-term evaluation tests, with an exempt value, are held in the course of the

lessons. The test consists in solving a problem by identifying the algorithm and

developing the relative program in C, similarly to what is explained in the lessons.

The vote will be expressed in thirtieths.

The grades from the exemption can only be used in the first exam session

(January/February).
Students who choose not to take part in the mid-term assessment tests, or fail to

pass them, take the exam starting in January.

The modality of the regular exam is similar to that described above for the two

intermediate tests (written exam and test).

Materials allowed to take the first midterm evaluation test and the written exam

test: reference text in paper format only.

The results of all the tests are communicated with a public list (matriculation

number and grade achieved) by email or social media. The final grade obtained is

proposed exclusively on the Esse3 platform.

Attendance incentives: any praise is most frequently given to students who, for the

vast majority of lessons, have attended, interacted during the lesson, proposed

solutions and solved the cases proposed by the teacher in class.

Evaluation criteria

Measurements and final grade

Mark Description

< 18 poor Fragmentary and superficial knowledge of the contents, errors in applying
the concepts, deficient description.

18 - 20 Sufficient but general content knowledge, simple description,

uncertainties in the application of theoretical concepts.

21 - 23 Appropriate but not in-depth knowledge of content, ability to apply
theoretical concepts, ability to present content in a simple way.

24 - 25 Appropriate and extensive knowledge of the contents, good ability to
apply knowledge, ability to present the contents in an articulated way.

26 - 27 Precise and complete content knowledge, good ability to apply
knowledge, analytical skills, clear and correct description.

28 - 29 Wide, complete and in-depth knowledge of the contents, good application
of the contents, good capacity for analysis and synthesis, safe and
correct description.

30

30 e lode
Very broad, complete and in-depth knowledge of the contents, well-
established ability to apply the contents, excellent capacity for analysis,
synthesis and interdisciplinary connections, mastery of description.

Further information

Students are advised to rely exclusively on the information/communications

provided on the official websites of the Computer Science Department, or on social

groups only if set up and administered exclusively by the teachers of the related

courses:

• https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/

corsi-di-laurea

• https://www.uniba.it/it/ricerca/dipartimenti/informatica

• https://elearning.di.uniba.it/

Course schedules are available here:

• https://programmi.di.uniba.it/

The information that all students should know is written in the Teaching regulations

and study posters available on the site:

• https://www.uniba.it/it/ricerca/dipartimenti/informatica/didattica/corsi-dilaurea/

corsi-di-laurea

Students are advised to be wary of information circulating on unofficial sites or

social groups, as they are often found to be unreliable, incorrect or incomplete.

https://elearning.di.uniba.it/
https://programmi.di.uniba.it/

